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P. GÓRA AND R. J. STERN

Abstract. A concise and direct proof is given that Hölder subdifferentials of
the (continuous but nowhere differentiable) Van der Waerden function H(·) ex-
hibits the same behaviour as the Weierstrass function: There exists a countable
dense set Γ ⊂ R (the dyadic rationals) such that each Hölder subdifferential
∂αH(x) is all of R for every x ∈ Γ, while ∂αH(x) = ∅ for x /∈ Γ.

1. Introduction

The classical Weierstrass function is given by

W (x) =
∞∑

n=0

an cos(bnπx) , 0 < x < 1 ,

where 0 < a < 1, b > 0 is an odd integer, and ab > 1 + 3π
2 . The function W (·) is

known to be continuous but nowhere differentiable.
In [8], Garg applied general results on the structure of nondifferentiable functions

as well as specific properties of W (·) in order to describe its Dini-subderivates,
and in [11], Wang noted that Garg’s results imply that the proximal and Dini
subdifferentials of W (·) are nonempty only on a countable dense set, and that on
this set these subdifferentials equal R. This is in a similar spirit to the main result
of Borwein, Girgensohn and Wang [3], which involved the construction of Lipschitz
functions whose Hölder subdifferentials are empty except on a countable dense set,
where they take a constant interval value.

McCarthy [9] may have been the first to observe that a “fractal sawtooth” con-
struction also yielded a continuous nondifferentiable function, but in a very simple
and direct way. One such sawtooth function is given as follows:

Denote by G(x) the distance from the real number x to the nearest integer. Let

Gn(x) =
1
2n

G(2nx) , n = 0, 1, 2, . . . ,

and let H : R → R be defined as

H(x) =
∞∑

n=0

Gn(x) .

H(·) is known as the Van der Waerden function. (See e.g. Billingsley [1], Cater [5]
as well as Shidfar and Sabetfakhri [10] for discussions of further properties of this
function.) Clarke, Ledyaev and Wolenski [7] employed a variant of H(·) in order to
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produce a C1 function whose proximal subdifferential is nonempty only on a dense
set of measure zero which does not contain a dense Gδ.

Our purpose in the present note is to show that just as the Van der Waerden
function provides a much simpler example than the Weierstrass function when it
comes to demonstrating continuity plus nondifferentiablilty, it also serves to exhibit,
in a particularly direct way, the aforementioned conclusion of Wang in [11] (which
is easily extended to all Hölder subdifferentials).

1.1. Some useful properties of H(·). Let

Hn(x) :=
n−1∑
m=0

Gm(x),

and denote the dyadic rationals by

Γ :=
{

k

2n
: k, n are integers, n ≥ 0

}
.

Denote the slope of Hn(·) at a point x by sl(Hn(x)). The following facts are
readily verified; the figure below is useful for this purpose. (Note that the functions
in the figure ae defined on the entire real line, but for convenience are only plotted
on the interval [0, 2]. Note also that the function H(·) has period 1.)

Figure 1. The family {Gn}

(a) Gn(x) = 0 for all x = k
2n , k, n ≥ 0 integers.

(b) Gn is piecewise linear with slopes ±1 and Gn has constant slopes on intervals
(k/2n+1, (k + 1)/2n+1), and in general (k/2m, (k + 1)/2m) with m > n.

(c) If I is a maximal interval for Hn with constant slope S, then sl(Hn+1(·)) has
slope S + 1 on first half of I and S − 1 on the second.

(d) If x = k/2m, then for n ≥ m the slope of Gn changes at x from −1 to 1.

1.2. Hölder subgradients and statement of main result. For α > 1 and
x ∈ R, we say that ζ ∈ R is an α−Hölder subgradient of H(·) at x if there exist
σ > 0 and an open interval I = I(x, σ) containing x such that

(1) H(t) − H(x) + σ|t − x|α ≥ ζ(t − x) ∀ t ∈ I .

Also, ζ is said to be a 1-Hölder subgradient of H(·) at x provided that for any given
σ > 0 there is an open interval I = I(x, σ) such that (1) holds. For α ≥ 1, the set
of all α-Hölder subgradients at x is called the α-Hölder subdifferential of H(·) at x,
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denoted ∂αH(x). (In common nonsmooth analysis parlance, ∂1H(x) is called the
Dini subdifferential, while ∂2H(x) is known as the proximal subdifferential.)

We have that ζ ∈ ∂1H(x) if for each σ > 0 there exists r = r(σ) such that

(2) H(y) ≥ H(x) + ζ(y − x) − σ|y − x| ∀ y ∈ (x − r, x + r) .

This means that H(·) majorizes the wedge W σ
x formed by the graph of

fx(y) := H(x) + ζ(y − x) − σ|y − x|,
for y ∈ (x − r, x + r), while fx(x) = H(x). The graph of fx(y) for y ∈ (x − r, x)
will be called the left arm of the wedge and the graph of fx(y) for y ∈ (x, x + r)
will be called the right arm of the wedge.

It is readily noted that for every x ∈ R one has

(3) 1 ≤ α < α′ =⇒ ∂α′H(x) ⊂ ∂αH(x) ,

which is vacuously true if ∂α′H(x) = ∅. Due to results in Borwein and Preiss [2],
we know that for each α ≥ 1, the set {x ∈ R : ∂αH(x) 
= ∅} is dense in R. (See
e.g. Clarke, Ledyaev, Stern and Wolenski [6] for density proofs specialized to the
proximal case.)

The main result of this note is the following, which asserts that the pathological
subdifferential behavior of the Weierstrass functon is duplicated by the Van der
Waerden function:

Theorem 1. For each α ≥ 1 one has

(4) x ∈ Γ =⇒ ∂αH(x) = R ,

and

(5) x /∈ Γ =⇒ ∂αH(x) = ∅ .

Theorem 1 asserts that while the set

{x ∈ R : ∂αH(x) 
= ∅} = Γ

is as “small as possible” (i.e. countably dense), the α−Hölder subdifferential is “as
large as possible” (namely all of R) on Γ, and that this is true for all α ≥ 1.

Remark 2. Let us denote the binary expansion by of x ∈ [0, 1] by

x =
∞∑

j=0

bj

2j+1
, bj ∈ {0, 1} .

Then the slopes of the functions Gm(·) at x are (−1)bm , m = 0, 1, 2, . . . , and the
slope of Hn(·) at x (denoted below by sl(Hn(x))) is

∑n−1
m=0(−1)bm , n = 1, 2, 3, . . .

A moment’s reflection yields that the sequence {sl(Hn(x))}∞n=1 can be viewed as
a random walk, whence the law of the iterated logarithm (see e.g. Breiman [4])
implies that almost everywhere in (0, 1] one has

(6) lim sup
n→∞

sl(Hn(x))√
2n log log n

= − lim inf
n→∞

sl(Hn(x))√
2n log log n

= 1 .

It transpires that if x ∈ (0, 1] satisfies (6), then ∂αH(x) = ∅ for all α ≥ 1. In view
of (3), it is enough to consider α = 1. Suppose that H(·) majorizes a wedge at
x as described above, and assume the left arm has slope S (which is necessarily
nonnegative). Then (6) implies that for infinitely many values of n, the slopes
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sl(Hn(x)) > S. Let us fix such an n and a k such that the interval ( k
2n , k+1

2n )
containing x. (Hn has constant slope on this interval.) We have H( k

2n ) = Hn( k
2n )

and H(x) ≥ Hn(x). Since sl(Hn(x)) > S, the point ( k
2n , H( k

2n )) is in the interior
of the wedge. We have a sequence of such points converging to (x, H(x)). The
treatment for the right arm is similar and we draw the required conclusion.

Although the random walk idea has appeal, the assertion of Theorem 1 is of
course stronger.

2. Proof of main result

Lemma 3. The point x is a local minimum for H(·) if and only if x ∈ Γ. Further-
more, for any integer Λ ≥ 1 there exists an open interval containing x such that
H(t) ≥ H(x) + Λ|t − x| for all t in this interval.

Proof: Let x = k/2n with k odd and n a nonnegative integer. (The case of
nonzero even k reduces to the odd case upon division, and the case k = 0 is
handled similarly to what follows.)

Let h = Hn(x) and let the integer S be the slope of Hn(·) in the interval
(k−1

2n , k
2n ). (Note that it is constant). Then, the slope of Hn(·) in the interval

( k
2n , k+1

2n ) is constant and equals S − 2. Let

Fn = Hn+|S|+Λ+2 = Hn + Gn + Gn+1 + · · · + Gn+|S|+Λ+1 .

By (a), Fn(x) = h. Also, By (d) the slope of Fn(·) is S − |S| − Λ − 2 < −Λ on the
interval (k/2n − 1/2n+|S|+Λ+2, k/2n) and is S − 2 + |S| + Λ + 2 ≥ Λ on
(k/2n, k/2n + 1/2n+|S|+Λ+2). Let

K(·) := H(·) − Fn(·) =
∞∑

m=n+|S|+Λ+2

Gm(·) .

We have K(x) = 0 and K(t) ≥ 0 for all t ∈ R. Thus, x is local minimum of H(·)
and

H(t) ≥ H(x) + Λ|t − x| ∀ t ∈ (x − 1/2n+|S|+Λ+2, x + 1/2n+|S|+Λ+2) .

Now assume that x /∈ Γ and that x is a local minimum of H(·). Then there is
an interval J containing x and such that

(7) H(t) ≥ H(x) ∀ t ∈ J .

The interval J contains (strictly) an interval I = (k/2n, (k+1)/2n) containing x.
The function Hn(·) has constant slope on I = (k/2n, (k + 1)/2n). We can assume
it is not 0. (Note that if it is, then we could consider halves of I, the intervals
I1 = ((k/2n, (2k + 1)/2n+1) and I2 = ((2k + 1)/2n+1, (k + 1)/2n). One of them
must contain x and the slope of Hn+1(·) is 1 on I1 and is −1 on I2.)

Then one of the values v1 = Hn(k/2n) or v2 = Hn((k + 1)/2n), say v1, satisfies
v1 < Hn(x). We have

Gk((k/2n)) = Gk((k + 1)/2n) = 0 ∀ k ≥ n ,

and
Gk(t) ≥ 0 ∀ t ∈ R, k ≥ n .
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Thus, H(k/2n) = v1 < H(x), which contradicts (7). �

Lemma 4. Let x ∈ R. If x /∈ Γ, then ∂1H(x) = ∅.

Proof: If x /∈ Γ, then the sequence (sl(Hn(x)))n≥1 satisfies at least one of the
conditions

(a) lim supn→∞ sl(Hn(x) = +∞;
(b) lim infn→∞ sl(Hn(x) = −∞;
(c) (sl(Hn(x)))n≥1 is bounded and there exist at least two integers, say a > b

such that (sl(Hn(x)))n≥1 contains infinitely many a’s and infinitely many b’s.
Let us fix x 
= k

2n and assume that ζ ∈ ∂1(x). We can assume that ζ ≥ 0. The
proof for ζ < 0 is similar.

We will first deal with cases (a) and (b). For fixed σ > 0, the slope of left arm
of W σ

x is ζ + σ > 0. The slope of the right arm is ζ − σ. In case (a) we choose n1

such that 2−n1 < r and sl(Hn1(x)) > ζ + σ.
There exists k = kn1 such that the interval ( k

2n1 , k+1
2n1 ) contains x. (Hn1 has

constant slope on this interval.) We have H( k
2n1 ) = Hn( k

2n1 ) and H(x) ≥ Hn1(x).
Since sl(Hn1(x)) > ζ + σ the point ( k

2n1 , H( k
2n1 )) is in the interior of the wedge

W σ
x . This contradicts (2).
In case (b) we choose n2 such that 2−n2 < r and sl(Hn2(x)) < ζ−σ. There exists

k = kn2 such that interval ( k
2n2 , k+1

2n2 ) contains x. (Hn2 has constant slope on this
interval.) We have H(k+1

2n2 ) = Hn(k+1
2n2 ) and H(x) ≥ Hn2(x). Since sl(Hn2(x)) <

ζ − σ the point (k+1
2n2 , H(k+1

2n2 )) is in the interior of the wedge W σ
x . This contradicts

(2).
Case (c). Let α be the obtuse angle between a straight line of slope a and a

straight line of slope b. We have α < π so we can find an σ > 0 such that α < ασ
x , the

angle between the left and right arms of the wedge. Let r = r(σ) correspond to this
σ. We choose n1 < n2 such that 2−n1 , 2−n2 < r and sl(Hn1(x)) = a, sl(Hn2(x)) =
b. There exist k1, k2 such that intervals I1 = ( k1

2n1 , k1+1
2n1 ), I2 = ( k2

2n2 , k2+1
2n2 ) both

contain x. (Hn1 has constant slope on I1 and Hn2 has constant slope on I2.) We
have H( k1

2n1 ) = Hn1(
k1
2n1 ) and H(x) ≥ Hn1(x). We have H(k2+1

2n2 ) = Hn2(
k2+1
2n2 ) and

H(x) ≥ Hn2(x). Thus, the angle ∠(H( k1
2n1 ), H(x), H(k2+1

2n2 )) is smaller then angle α

and therefore smaller than angle ασ
x . Thus, at least one of the points ( k1

2n1 , H( k1
2n1 )),

(k2+1
2n2 , H(k2+1

2n2 )) is in the interior of the wedge W σ
x . This contradicts (2). �

Proof of Theorem 1: The implication (4) follows directly from Lemma 3, while
Lemma 4 and (3) immediately yield (5). �

For α ≥ 1, let us define the limiting α-Hölder subdifferential of H(·) at x as

∂L
αH(x) := {lim

i
ζi : ζi ∈ ∂αH(xi) , xi → x} .

Basic nonsmooth analysis (see [6]) asserts equality in the Dini and proximal cases;
that is, ∂L

1 H(x) = ∂L
2 H(x), which in view of (3) gives equality for all α ∈ [1, 2].

However, Theorem 1 implies more than this due to the special nature of the Van
der Waerden function:
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Corollary 5. For all α ≥ 1, we have ∂L
αH(x) = R for every x ∈ R.
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