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STRONGER LASOTA-YORKE INEQUALITY

FOR ONE-DIMENSIONAL

PIECEWISE EXPANDING TRANSFORMATIONS

PEYMAN ESLAMI AND PAWEL GÓRA

(Communicated by Bryna Kra)

Abstract. For a large class of piecewise expanding C1,1 maps of the interval
we prove the Lasota-Yorke inequality with a constant smaller than the previ-
ously known 2/ inf |τ ′|. Consequently, the stability results of Keller-Liverani
apply to this class and in particular to maps with periodic turning points. One

of the applications is the stability of acim’s for a class of W-shaped maps. An-
other application is an affirmative answer to a conjecture of Eslami-Misiurewicz
regarding acim-stability of a family of unimodal maps.

1. Introduction

The problem of stability in general and the stability of invariant measures in
particular are one of the most important (and difficult) questions in dynamical sys-
tems. Here, we are concerned with the stability of absolutely continuous invariant
measures (acim-stability) for piecewise expanding maps of an interval. The general
setting is as follows.

Definition 1.1 (acim-stability). Given a family of maps {τε : X → X}ε≥0 with cor-
responding invariant densities {fε}ε≥0, we say that τ0 is acim-stable if limε→0 τε =
τ0 implies limε→0 fε = f0. The limits are taken with respect to properly chosen
metrics on the space of maps and densities, respectively.

A relevant notion of closeness for maps under consideration is convergence in the
Skorokhod metric (see Definition 4.4), and for the corresponding invariant densities,
in this paper it is convergence in L1.

Stability problems were investigated in a multitude of works; most relevant to
our study are [6] and [7].

The main motivation for this work was to prove acim-stability for someW-shaped
maps with slopes > 1 (by a slope we shall always mean the absolute value of the
slope). A troublesome property of such maps is that they contain periodic turning
points. Let us consider such a map W with a fixed turning point p0. This would
not be a problem if |W ′| > 2 (whenever the derivative exists). In fact, then the
acim-stability of W follows directly from the results of [6]. However, if 1 < |W ′| ≤ 2
near p0, the standard procedure, which is to work with an iterate of W that has
derivative > 2, fails due to the presence of the fixed turning point p0. We bypass
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2 P. ESLAMI AND P. GÓRA

this problem by deriving a stronger Lasota-Yorke inequality, hence avoiding the
iteration of the maps.

A. Lasota and J. Yorke [10] first discovered this inequality and used it to prove
the existence of acim’s for piecewise expanding C2 maps. Z. Kowalski [8] later
proved the existence of acim’s for piecewise expanding C1,1 maps.

In this work we consider piecewise expanding C1,1 maps of an interval (see [9] for
higher-dimensional results).1 We prove a Lasota-Yorke inequality with a constant
which is smaller than the previously known 2/ inf |τ ′| for a fairly large class of maps.
This allows us to apply the stability theorems of [7]. One of the implications would
be the acim-stability of a class of maps in the presence of periodic turning points.

We point out that perhaps one may be able to enlarge the class of maps under
consideration to piecewise expanding C1+ε maps (i.e. with a Hölder condition on
the derivatives). However, there are examples of piecewise expanding C1 maps with
no acim’s, as shown in [5].

2. Setting and notation

Suppose I = [0, 1] and m is the Lebesgue measure on I. We will be concerned
with piecewise expanding C1,1 maps on I, which are defined as follows.

Definition 2.1 (Piecewise expanding C1,1 functions). Suppose there exists a par-
tition P = {Ii := (ai−1, ai), i = 1, . . . , q} of I such that τ : I → I satisfies the
following conditions. For all i,

(1) τi := τ|Ii is monotonic, C1, and can be extended to the closed interval

[ai−1, ai] as a C1 function;
(2) τ ′i is Lipschitz, i.e., there exists a constant Mi such that |τ ′i(x) − τ ′i(y)| ≤

Mi|x− y|, for all x, y ∈ Ii;
(3) |τ ′i(x)| ≥ si > 1 for all x ∈ Ii.

Then, we say τ ∈ T (I), the class of piecewise expanding C1,1 maps on I.

If a family of maps {τε} satisfies the above conditions with uniform constants si
and Mi (i.e. independent of ε), then we shall write {τε} ⊂ T (I) uniformly.

We will use the following notation throughout the paper.
Let

s := min
1≤i≤q

si and M := max
1≤i≤q

Mi.

Also, let

δ±i := δ{τ(a±
i )/∈{0,1}} =

{
0 if τ (a±i ) ∈ {0, 1},
1 if τ (a±i ) /∈ {0, 1},

where τ (a±i ) means limx→a±
i
τ (x). For example, δ+i = 1 means that the left end-

point of the (i+ 1)-st branch of τ is hanging (doesn’t touch 0 or 1).
We denote by Pτ the Perron-Frobenius operator induced by τ on L1(I). That

is,

Pτf =
∑

y∈τ−1(x)

g(y)f(y) =

q∑
i=1

f(τ−1
i (x))∣∣τ ′(τ−1
i (x))

∣∣χτ(ai−1,ai)(x),

1Upon a more detailed look at the approach of Liverani in [9], we believe that his approach,
at least in the piecewise C2 case, essentially leads to the same stronger Lasota-Yorke inequality
which is presented in this paper.
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where g(y) := 1/|τ ′(y)|. Note that supIi |g| ≤ 1/si < 1.
The (total) variation of a function f : I → R is defined as

∨
I

f = sup
0=x0<x1<x2<···<xN=1

N∑
i=1

|f(xi)− f(xi−1)| ,

where the supremum is taken over all the partitions of the interval I.
The essential variation of a function f : I → R is defined by∨

I

f = inf
g�f

∨
I

g,

where � denotes equality almost everywhere with respect to Lebesgue measure.
We will consider Pτ on the space of functions of the bounded essential variation

BV (I) = {f ∈ L1(I) :
∨
I

f < ∞}

modulo equality almost everywhere, with the norm

‖f‖BV = ‖f‖L1 +
∨
I

f .

Since functions of the bounded variation are continuous except at the most count-
able number of points at which they have one-sided limits, we assume that functions
in BV (I) satisfy

(2.1) f(x0) = max

{
lim

x→x−
0

f(x) , lim
x→x+

0

f(x)

}

at any point x0 ∈ I. For such functions
∨

I f =
∨

If . For more information about
BV (I) we refer the reader to [1] and [3].

3. Lasota-Yorke inequality

Let

ηi :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max
{

δ+0
s1
,
δ+1
s2

}
if i = 1,

max

{
δ−q−1

sq−1
,
δ−q
sq

}
if i = q,

max

{
δ−i−1

si−1
,

δ+i
si+1

}
for i = 2, . . . , q − 1.

The new Lasota-Yorke inequality is given by the following.

Proposition 3.1 (New Lasota-Yorke inequality). Suppose τ ∈ T (I), i.e., the class
of piecewise expanding C1,1 maps on I. Then, for every f ∈ BV (I),

(3.1)
∨
I

Pτf ≤ max
1≤i≤q

{
1

si
+ ηi

}∨
I

f +

[
M

s2
+

2max1≤i≤q ηi
min1≤i≤q m(Ii)

] ∫
I

|f |dm.

Proof. We will estimate
∨

I Pτf . Let 0 = x0 < x1 < x2 < · · · < xN = 1 be a parti-

tion of I. We assume that the points τi(a
−
i ) and τi(a

+
i ), i = 1, 2, . . . , q, are included

in this partition. This does not diminish the generality of the considerations. We
also assume without loss of generality that

(3.2) max {|xj − xj−1| : j = 1, 2, . . . , N} → 0 as N → ∞.
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Let Ii := (ai−1, ai). Let us use the following notation:

gi(x) := g(τ−1
i (x))χτ(Ii)(x), fi(x) := f(τ−1

i (x))χτ(Ii)(x).

Both functions gi and fi are supported on τ (Ii).
Let Ji denote the set of indices j such that xj−1 and xj ∈ τ (Ii) . We have

N∑
j=1

|Pτf(xj)− Pτf(xj−1)| ≤
N∑
j=1

q∑
i=1

|gi(xj)fi(xj)− gi(xj−1)fi(xj−1)|

≤
q∑

i=1

∑
j∈Ji

|gi(xj)fi(xj)− gi(xj−1)fi(xj−1)|

+

q∑
i=1

(∣∣g(a+i−1)f(a
+
i−1)δ

+
i−1

∣∣+ ∣∣g(a−i )f(a−i )δ−i ∣∣)

≤
q∑

i=1

∑
j∈Ji

|fi(xj) (gi(xj)− gi(xj−1))|+
q∑

i=1

∑
j∈Ji

|gi(xj−1) (fi(xj)− fi(xj−1))|

+

q∑
i=1

(
δ+i−1

si
|f(ai−1)|+

δ−i
si

|f(ai)|
)
.

Using the Lipschitz condition on τ ′, we estimate the first sum above as follows:

∑
j∈Ji

|fi(xj) (gi(xj)− gi(xj−1))| ≤
∑
j

∣∣∣∣fi(xj)
τ ′(τ−1

i (xj−1))− τ ′(τ−1
i (xj))

τ ′(τ−1
i (xj))τ ′(τ

−1
i (xj−1))

∣∣∣∣
≤ M

s2

∑
j

∣∣f(τ−1
i (xj))

∣∣ ∣∣τ−1
i (xj)− τ−1

i (xj−1)
∣∣

≤ M

s2

∫
Ii

|f |dm+ εi(N).

The last sum above is a Riemann sum, which is estimated by the corresponding
integral and an error term εi(N). It follows from assumption (3.2) that εi(N) → 0
as N → ∞.

Using this estimate,

N∑
j=1

|Pτf(xj)− Pτf(xj−1)| ≤ M

s2

q∑
i=1

∫
Ii

|f |+
q∑

i=1

εi(N) +

q∑
i=1

1

si

∨
Ii

f

+

q∑
i=1

(
δ+i−1

si
|f(ai−1)|+

δ−i
si

|f(ai)|
)
.

We divide the last sum into three groups and estimate them as follows:

δ+0
s1

|f(a0)|+
δ+1
s2

|f(a1)| ≤ max

{
δ+0
s1

,
δ+1
s2

}(∨
I1

f + 2 inf
I1

|f |
)

≤ max

{
δ+0
s1

,
δ+1
s2

}(∨
I1

f +
2

m(I1)

∫
I1

|f |
)
.
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Similarly,

δ−q−1

sq−1
|f(aq−1)|+

δ−q
sq

|f(aq)| ≤ max

{
δ−q−1

sq−1
,
δ−q
sq

}⎛
⎝∨

Iq

f +
2

m(Iq)

∫
Iq

|f |

⎞
⎠ .

Finally, for i = 2, . . . , q − 1,

δ−i−1

si−1
|f(ai−1)|+

δ+i
si+1

|f(ai)| ≤ max

{
δ−i−1

si−1
,
δ+i
si+1

}(∨
Ii

f +
2

m(Ii)

∫
Ii

|f |
)
.

Therefore,

N∑
j=1

|Pτf(xj)− Pτf(xj−1)| ≤ M

s2

q∑
i=1

∫
Ii

|f |+
q∑

i=1

εi(N) +

q∑
i=1

1

si

∨
Ii

f

+max

{
δ+0
s1

,
δ+1
s2

}(∨
I1

f +
2

m(I1)

∫
I1

|f |
)

+max

{
δ−q−1

sq−1
,
δ−q
sq

}⎛
⎝∨

Iq

f +
2

m(Iq)

∫
Iq

|f |

⎞
⎠

+

q−1∑
i=2

max

{
δ−i−1

si−1
,
δ+i
si+1

}(∨
Ii

f +
2

m(Ii)

∫
Ii

|f |
)
.

Estimating Ii by mini m(Ii) and combining appropriate terms together, we get

N∑
j=1

|Pτf(xj)− Pτ (xj−1)| ≤ max
1≤i≤q

{
1

si
+ ηi

}∨
I

f

+

[
M

s2
+

2max1≤i≤q ηi
minim(Ii)

] ∫
I

|f |dm+

q∑
i=1

εi(N).

Finally, letting N → ∞, we arrive at inequality (3.1). �

Corollary 3.1 (“Standard” Lasota-Yorke inequality). If s = min1≤i≤q si > 2, then
we obtain the standard Lasota-Yorke inequality (see [10])∨

I

Pτf ≤ 2s−1
∨
I

f + (K + 2β−1)‖f‖L1 ,

where K := M/s2 and β := min1≤i≤q m(Ii).

Remark 3.1. The classical proof of the standard Lasota-Yorke inequality differs
from that of Proposition 3.1 in grouping the terms in the estimates. It uses the
inequality

∨
I

Pτf ≤
q∑

i=1

⎛
⎝ ∨

τ(Ii)

gifi +
∣∣gi(τ (a+i−1))fi(τ (a

+
i−1))δ

+
i−1

∣∣+ ∣∣gi(τ (a−i ))fi(τ (a−i ))δ−i ∣∣
⎞
⎠

and then proceeds similarly as above without mixing the terms from the neighbour-
ing subintervals. This works if si > 2 or if both δ+i−1 and δ−i are 0.
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The following theorems state conditions under which the coefficient of
∨

I f in
inequality (3.1) is less than 1. That is,

(3.3) max
1≤i≤q

{
1

si
+ ηi

}
≤ α < 1,

for some α > 0.

Theorem 3.2. Suppose τ ∈ T (I) satisfies the following condition:

1

si
+

1

si+1
≤ α < 1, for i = 1, . . . , q − 1.

Then (3.3) holds for τ or for an extension (τ̂ , Î) of (τ, I) that contains (τ, I) as an
attractor.

Proof. Let us first assume that

(3.4) τ (0), τ (1) ∈ {0, 1}.
For i = 1 (and similarly for i = q):

1

s1
+ η1 ≤ 1

s1
+max

{
δ+0
s1

,
δ+1
s2

}
≤ 1

s1
+

1

s2
≤ α < 1.

For i = 2, . . . , q − 1:

1

si
+ ηi ≤

1

si
+max

{
δ−i−1

si−1
,
δ+i
si+1

}
≤ max

{
1

si
+

1

si−1
,
1

si
+

1

si+1

}
≤ α < 1.

If condition (3.4) does not hold, we extend the map τ to a map τ̂ defined on a

larger interval Î for which condition (3.4) is satisfied and the original system (τ, I)
is an attractor. The idea of the proof is presented in Figure 1. �

Figure 1. Extending the system τ : I → I to τ : Î → Î in such a
way that (τ, I) is the attractor of (τ̂ , Î).

The following theorem is a generalization of Theorem 3.2.

Theorem 3.3. Let s∗i := si
si−1 . Suppose τ ∈ T (I) satisfies the following conditions:

(1) For the first branch:
(a) if τ (a0) /∈ {0, 1}, then s1 > 2;
(b) if τ (a−1 ) /∈ {0, 1}, then s2 > s∗1 .

(2) For the last branch:
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(a) if τ (a+q−1) /∈ {0, 1}, then sq−1 > s∗q;

(b) if τ (a−q ) /∈ {0, 1}, then sq > 2 .
(3) For all i = 2, . . . , q − 1:

(a) if τ (a+i−1) /∈ {0, 1}, then si−1 > s∗i ;

(b) if τ (a−i ) /∈ {0, 1}, then si+1 > s∗i .

Then (3.3) holds.

Proof. Let us sketch a proof of (3.3). First, note that we can find 0 < α < 1 such
that for all i = 1, . . . , q − 1,

(i) if si+1 > s∗i , then si+1 ≥ si
αsi−1 > s∗i ;

(ii) if s1 > 2, then s1 ≥ 2
α > 2; and

(iii) if sq > 2, then sq ≥ 2
α > 2.

Now suppose i = 1. Conditions (i), (ii) above, and condition (1) (a) of the
theorem imply

1

s1
+ η1 ≤ max

{
2

s1
,
1

s1
+

1

s2

}
≤ α < 1.

A similar argument applies when i = 2, . . . , q, showing that

1

si
+ ηi ≤ α < 1,

hence proving (3.3). �

4. Existence and stability of acim’s

Our existence and stability results are the applications of known results and
methods to a wider space of maps. By a density we mean a function f ∈ L1 such
that f ≥ 0 and

∫
fdm = 1.

Theorem 4.1 (Quasicompactness and existence of acim’s). If a map τ ∈ T (I)
satisfies inequality (3.1) with the coefficient

max
1≤i≤q

{
1

si
+ ηi

}
≤ α < 1,

for some α > 0, then for any f ∈ BV (I) and n ∈ N,

‖Pn
τ f‖BV ≤ αn‖f‖BV +

(
1 +

K + 2β−1

1− α

)
‖f‖L1 ,

where K := M/s2 and β := min1≤i≤q m(Ii). Furthermore, τ admits an acim with
a density of bounded variation and where Pτ : BV (I) → BV (I) is quasicompact.

Proof. Using the norm ‖ · ‖BV :=
∨

I(·) + ‖ · ‖L1 of BV (I) and Proposition 3.1, it
follows that for all n ∈ N,

‖Pn
τ f‖BV ≤ αn‖f‖BV +

(
1 +

K + 2β−1

1− α

)
‖f‖L1 .

Since {f ∈ BV : ‖f‖BV ≤ 1} is relatively compact in the ‖ · ‖L1 norm, it follows
by standard arguments that Pτ has a fixed point in BV (I), the essential spectral
radius of Pτ (as defined below) on BV (I) is ≤ α < 1, and Pτ : BV (I) → BV (I) is
quasicompact. �
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Definition 4.2 (Essential spectral radius). Consider a bounded linear operator
P . We denote its spectrum by σ(P ) and its spectral radius by rspec. The set of
all eigenvalues in σ(P ) that are isolated and of finite multiplicity will be called
the discrete spectrum of P , denoted by σdisc(P ). The complement of σdisc(P ) in
σ(P ) will be called the essential spectrum of P , denoted by σess(P ). The essential
spectral radius ress of P is defined as the smallest upper bound for all elements of
σess(P ).

Definition 4.3 (Eigenvalue gap, spectral gap). The eigenvalue gap of P is defined
as rspec − λ2, where λ2 := sup{λ ∈ σ(P ) : |λ| < rspec(P )}. The spectral gap of P
is defined as rspec − ress.

For any τ ∈ T , it is well-known that the spectral radius of Pτ on the space
BV (I) is equal to 1. That is, the eigenvalue gap of Pτ equals 1 − λ2, while its
spectral gap equals 1− ress.

Now we turn to the problem of stability. We shall use the Skorokhod metric as
a measure of closeness for maps.

Definition 4.4 (Skorokhod metric). The Skorokhod distance dS(τε, τ0) between
two maps is the infimum of all positive r such that there exists a subset Ar ⊆ I
with m(Ar) > 1− r and a diffeomorphism σ : I → I such that

τε|Ar
= τ0 ◦ σ|Ar

, |σ(x)− x| < r, and

∣∣∣∣ 1

σ′(x)
− 1

∣∣∣∣ < r,

for all x ∈ Ar.

The following stability theorem is a direct consequence of Keller-Liverani stabil-
ity results (see e.g. Corollaries 1, 2 and Remark 4 of [7]) and Proposition 3.1.

Theorem 4.5 (Stability). Consider the one-parameter family of maps {τε}ε≥0,
where {τε}ε≥0 ∈ T (I) uniformly. Suppose there exists 0 < α < 1 such that

max
1≤i≤q

{
1

si
+ ηi

}
≤ α < 1.

Let fε be a τε-invariant density whose existence is guaranteed by Theorem 4.1. If
dS(τε, τ0) → 0 as ε → 0, then the following statements hold:

(1) The family {fε}ε>0 is relatively compact in L1, and any of its limit functions
is a τ0-invariant density.

(2) If τ0 is ergodic, then τε is ergodic for small ε and fε → f0 in L1 as ε → 0
(i.e. τ0 is acim-stable).

(3) If τ0 is weakly mixing, then the eigenvalue gaps of {Pτε}ε, for ε small
enough, are uniformly bounded, i.e. 0 < γ < 1 − |λε

2|. As a consequence,
there exists a constant C > 0 such that for all ε small enough and all
densities f ∈ BV ,

(4.1)
∥∥Pn

τεf − fε
∥∥
L1 ≤ C(1− γ)n‖f‖BV .

Remark 4.6. It also follows by Theorem 4.1 that there is a uniform spectral gap for
the family {Pτε}ε≥0 bounded below by 1− α.

The stronger L-Y inequality (3.1) allows us to apply the results about stochastic
perturbations such as those discussed in [4] and [6] to a wider class of maps satisfying
the conditions of Theorems 3.2 or 3.3. In particular, inequality (3.1) extends the
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validity of Ulam’s approximation method to such maps. Similarly, the results of
[12] can be extended to this class of maps.

5. Examples

Below we give examples of situations ensuring that the assumptions of Theo-
rem 4.5 are satisfied.

Example 5.1. Assume that τ0 ∈ T (I) and satisfies condition (3.3). Assume that
{τε}ε>0 is defined on the same partition P = {I1, I2, . . . , Iq} as τ0, and τε → τ0
as ε → 0 in C1(int(Ii)) for all i = 1, 2, . . . , q. Then, dS(τε, τ0) → 0 as ε → 0,
{τε} ⊂ T (I) uniformly for all ε ≥ 0, and the conclusions of Theorem 4.5 hold.

Example 5.2. Assume that τ0 ∈ T (I) and satisfies condition (3.3). Assume that τε
is piecewise expanding on the partition Pε = {I(ε)1 , I

(ε)
2 , . . . , I

(ε)
q }, I(ε)i = (a

(ε)
i−1, a

(ε)
i ),

such that a
(ε)
i → a

(0)
i as ε → 0 (in particular, τε has the same number of monotonic

branches as τ0). Additionally, assume that there exists ε1 > 0 such that for every
0 < ε0 < ε1, τε → τ0 in C1 on the set⋃

i=1,2,...,q

[
max

{
a
(0)
i−1, a

(ε0)
i−1

}
,min

{
a
(0)
i , a

(ε0)
i

}]

and that {τε} ⊂ T (I) uniformly for all ε ≥ 0. Then, dS(τε, τ0) → 0 as ε → 0, and
the conclusions of Theorem 4.5 hold.

Example 5.3 (Asymmetric W-map). Let W0 be the asymmetric W-map whose
graph is shown in Figure 2(a). It is straightforward to check that W0 satisfies
the slope conditions of Theorem 3.2. Therefore, it is acim-stable with respect to
perturbations described in Examples 5.1 and 5.2.

Remark 5.4. W-maps were first constructed by Keller [6] and shown to be acim-
unstable under perturbations that force the existence of invariant intervals (e.g.
perturbations that only move the fixed turning point downward). It was shown in
[2] that Markov W-maps could be acim-unstable even with respect to perturbations
that do not produce an invariant interval (e.g. perturbations that move the fixed
turning point upward). Later in [11] the acim-instability of these maps was proven
without assuming that they are Markov. In both of the papers the limiting W-map
had slope = 2 on both sides of the fixed turning point. Recently, in [13] and using
the same techniques as [11], it was shown that these maps are acim-unstable (under
specific perturbations) if 1/s2 + 1/s3 ≥ 1 and acim-stable if 1/s2 + 1/s3 < 1. Here
s2 and s3 represent the slopes on the left and right sides of the fixed turning point,
respectively.

Example 5.5. Consider the piecewise linear map τ with five branches whose graph
is shown in Figure 2(b). The partition points are

{
0, 1

20 ,
1
10 ,

1
4 ,

1
3 , 1

}
and the slopes{

16, 16, 5
3 , 3,

3
2

}
, correspondingly. It is easily checked that τ satisfies the hypothesis

of Theorem 3.3. In fact,

max
1≤i≤5

{
1

si
+ ηi

}
= max

{
1

16
+

1

16
,
1

16
+

3

5
,
3

5
+

1

3
,
1

3
+

3

5
,
2

3
+ 0

}
=

14

15
< 1.

Therefore, τ is acim-stable with respect to perturbations described in Examples 5.1
and 5.2.

The results of this paper allow us to answer a question posed in [2].
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4 4

5

(a)

3

16

(b)

Figure 2. Figure (a) shows the graph of the asymmetric W-map
of Example 5.3. Figure (b) shows the graph of the map τ of Ex-
ample 5.5.

Example 5.6. Consider the family of unimodal maps {τt}0≤t<1/2 defined by

(5.1) τt(x) =

{
1
2 − t+ (1 + 2t)x, 0 ≤ x < 1

2 ,

2− 2x, 1
2 ≤ x ≤ 1.

τ0 is exact with invariant density f0 = 2
3χ[0,1/2]+

4
3χ[1/2,1]. The question is whether

τ0 is acim-stable in the family {τt}t≥0. Note that τ0 has a turning point at 1/2,
which is periodic with period 3. Previously known methods did not give an answer
to this question.

We will consider the family of third iterates, {τ3t }t>0. The slopes of τ3t are
s1 = s3 = s7 = 2 + 8t + 8t2, s2 = s4 = s6 = 4 + 8t, and s5 = 8. The map τ30 is
shown in Figure 3(a), and a typical τ3t is shown in Figure 3(b). Since τ0 is exact,
τ30 is also exact with the same acim; moreover, the acim-stability of τ30 implies the
same for τ0. Because of arbitrarily short intervals in the partitions Pt, our results
cannot be applied directly to the family {τ3t }.

Let g
(t)
1 and g

(t)
7 be linear functions which coincide with the first and last branches

of τ3t , respectively. For each t we find points a
(t)
0 and a

(t)
8 such that g

(t)
1 (a

(t)
0 ) = a

(t)
8

and g
(t)
7 (a

(t)
8 ) = a

(t)
0 . We extend maps τ3t to [a

(t)
0 , a

(t)
8 ] using the functions g

(t)
1 and

g
(t)
7 . Let us call the new maps τ̂3t , although they may not be third iterates of some
other maps. The new maps are shown in Figure 4(b) for t > 0 and in Figure 4(a)
for the limiting case t = 0.

The extended family satisfies assumptions of Theorem 3.2 and Example 5.2, so
we have acim-stability as described in Theorem 4.5. For all maps τ̂3t the interval
[0, 1] is the attractor supporting the unique acim’s. Thus, we obtain acim-stability
of τ30 and consequently the acim-stability of τ0.
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(a) (b)

Figure 3. Figure (a) shows the graph of τ30 of Example 5.6. Fig-
ure (b) shows the graph of τ3t , for t = 0.1.

(a) (b)

Figure 4. Figure (a) shows the graph of τ̂30 of Example 5.6. Fig-
ure (b) shows the graph of τ̂3t , for t = 0.05.
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