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Map with memory

Let f : R → R be a map. We want to consider a process,

which is not a map, and represents situation when f on each

step uses not only current information but also some

information from the past. For current state xn and

0 < α < 1 we define:

xn+1 = T(xn) = f (αxn +(1−α)xn−1) .
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"Invariant measure" and map G

We are interested in something we could call an "invariant

measure" of the process. We consider ergodic averages

Ag(x0,x−1) = lim
n→∞

1

n

n−1

∑
i=0

g(xi).

They are related to ergodic averages of the map

G : R
2 → R

2 defined by

G(x,y) = (y, f (αy+(1−α)x) .
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"Invariant measure"

Let us assume that G has an ergodic invariant measure ν on

B(R2). Measure ν defines a marginal measure µ on the first

coordinate: µ(A) = ν(A×R). In particular, if

ν = h(x,y)dxdy is an absolutely continuous measure with

density h(x,y), then

µ =

(

∫

R

h(x,y)dy

)

dx

is also absolutely continuous with density

h1(x) =
∫

R
h(x,y)dy.
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"Invariant measure"

Since we assume that G is ν-ergodic, the Birkhoff’s Ergodic

Theorem holds. Thus, for any integrable function g and

almost every pair (x,y) we have

lim
n→∞

1

n

n−1

∑
i=0

g(Gi(x,y)) =

∫

g(x,y)dν(x,y) .

If the function g depends only on the first coordinate, we

can rewrite this as

lim
n→∞

1

n

n−1

∑
i=0

g(Π1(Gi(x,y))) =

∫

g(x)dµ(x) .
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"Invariant measure"

If we accept inconsistency in the first few terms of the sum

(which does not change the limit), we have

lim
n→∞

1

n

n−1

∑
i=0

g(Ti(x)) =

∫

g(x)dµ(x) .

Since the limit is independent of initial condition the history

used by T is unimportant.

This shows that the marginal of the G-invariant measure

determines the behaviour of ergodic averages of trajectories

of the process T. Thus, µ is a good candidate for an

"invariant" measure of T.
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Example: f is the tent map

We considered the example where f : [0,1]→ [0,1] is the

tent map.

Tent map
{

f (x) = 2x, if ,x < 1/2

2−2x, if ,x ≥ 1/2.
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Example: f is the tent map

Then, G is a piecewise linear map:

G(x,y)=

{

2αy+2(1−α)x, if αy+(1−α)x < 1/2;

2−2αy−2(1−α)x, if αy+(1−α)x ≥ 1/2.

Partition for the map G.
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Derivative matrices D1,D2

Below (to the left of) the line αy+(1−α)x = 1/2 the

derivative matrix of G is

D1 =

[

0 1

2(1−α) 2α

]

,

and above (to the right of) this line it is

D2 =

[

0 1

−2(1−α) −2α

]

,
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Eigenvalues of matrices D1,D2

Green: absolute value of eigenvalues of D1, red: of D2.
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Conjectures and Theorems

Computer experiments show that G behaves in very

different manners depending on α . We conjecture:

0 < α < 1/2: map G preserves absolutely continuous

invariant measure. Proven for 0 < α ≤ 0.46.

α = 1/2: every point is eventually periodic with period 3.

Proven.

1/2 < α < 3/4: the fixed point (2/3,2/3) is the global

attractor. Proven.

α = 3/4: every point on the line x+y = 4/3 is periodic

with period two. Any other point is attracted to a one of

these periodic trajectories. Proven.
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Conjectures and Theorems

3/4 < α < 1: map G preserves a singular continuous

measure, so called SRB-measure µ . (Sinaj-Ruelle-Bowen).

1

n

n−1

∑
k=0

g(Gk(x,y))→
∫

gdµ ,

for any continuous g and Lebesgue almost every (x,y).
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ACIM - Absolutely Continuous Invariant

Measure

Tsujii Theorem: If T : B → B is piecewise real analytic and

for any vector v

‖DT(v)‖ ≥ λ‖v‖ , λ > 1,

then T preserves an ACIM.

Singular values of the matrix M are square roots of

eigenvalues of M∗M. In dimension 2, the smaller of them

σ2 = inf
v 6=0

‖M(v)‖

‖v‖
.

Useful inequalities:

σ2(M1 ·M2)≥ σ2(M1)σ2(M2),

σ2(
n

∏
i=1

Mi) ≥
det(∏n

i=1 Mi)

‖∏n
i=1 Mi‖

.
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ACIM - Absolutely Continuous Invariant

Measure

For 0 < α ≤ 0.2476036800 it is easy to see that

σ2(DiDj) > 1 for all combinations of 1 ≤ i, j ≤ 2.

Singular values σ2(D1D2) = σ2(D1D1) (blue) and

σ2(D2D1) = σ2(D2D2) (red).
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ACIM - Absolutely Continuous Invariant

Measure

Computer experiments using the inequality

σ2(
n

∏
i=1

Mi) ≥
det(∏n

i=1 Mi)

‖∏n
i=1 Mi‖

.

show that for any 0 < α < 1/2 some iterate of G satisfies

Tsujii’s condition.

Proven for 0 < α ≤ 0.46.

For α’s in a very narrow window around α = 0.493, the

support of conjectured acim consists of 175 clusters which

under action of G move by 58 positions in the clockwise

direction. Since 3 ·58 = 174, G175 preserves every cluster.

We observed similar behaviour for

α = 0.4883 (106 clusters moving by 35 positions),

α = 0.4943 (214 clusters moving by 71 positions) and

α = 0.4973 (448 clusters moving by 149 positions).
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ACIM - Absolutely Continuous Invariant

Measure

Support of conjectured ACIM for α = 0.4930 and one of

the clusters.
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α = 1/2 Period Three

Initial point in the upper half.
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1/2 < α < 3/4 Globally Attracting Fixed Point

For 1/2 < α < 3/4 the fixed point (2/3,2/3) attracts all

other points (except (0,0)).

Trapping region.
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1/2 < α < 3/4 Globally Attracting Fixed Point

The evolution of the trapping region.
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Eigenvalues of matrices D1,D2

Green: absolute value of eigenvalues of D1, red: of D2.
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α = 3/4: Globally Attracting Segment

For α = 3/4, every point on the line x+y = 4/3 is periodic

with period two. Any other point is attracted to a one of

these periodic trajectories.

Attracting segment (green) for α = 3/4.



Maps with Memory

Contents

Map with memory

"Invariant measure" and

map G

Example: f is the tent map

Conjectures and Theorems

0 < α < 1/2 Absolutely

Continuous Invariant

Measure

α = 1/2 Eventually Period

Three

1/2 < α < 3/4 Period

ThreeGlobally Attracting

Fixed Point

α = 3/4: Globally

Attracting Segment

α > 3/4:

Sinaj-Ruelle-Bowen

measure

References

α = 3/4: Globally Attracting Segment

Typical trajectory.
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α > 3/4: Sinaj-Ruelle-Bowen measure

For α > 3/4, one eigenvalue of D2 is larger than 1, another

smaller than 1, with det(D2) < 1.

We conjecture that G preserves singular continuous SRB

measure, with absolutely continuous conditional measures

on unstable segments.
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