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Abstract

For Markov processes evolving on multiple time-scales a combination of large component scalings and
averaging of rapid fluctuations can lead to useful limits for model approximation. A general approach to
proving a law of large numbers to a deterministic limit and a central limit theorem around it have already
been proven in Kang and Kurtz (2013) and Kang et al. (2014). We present here a general approach to
proving a large deviation principle in path space for such multi-scale Markov processes. Motivated by
models arising in systems biology, we apply these large deviation results to general chemical reaction
systems which exhibit multiple time-scales, and provide explicit calculations for several relevant examples.
Crown Copyright c⃝ 2018 Published by Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, continuous-time Markov chain models have found extensive use in systems
biology. The complexity of the models introduced has led to interest in a variety of model
reduction techniques. Some of these techniques result in what are effectively laws of large
numbers giving approximations of the model or subsets of the model by systems of ordinary
differential equations. Corresponding central limit theorems for the deviations of the stochastic
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model from the approximating ordinary differential equation have also been given. In addition
to the laws of large numbers and central limit theorems it is both natural and of some biological
interest to consider the corresponding large deviation behaviour of these models.

Models with what we will refer to as the “classical” scaling fit naturally into classical large
deviation results going back to Wentzell [27], and we will review these briefly; however, our
primary interest is in models with multiple time-scales. These models arise from non-standard
scalings of Markov chains with density-dependent rates. Dependence of the transition rates on all
variables implies a full coupling of, and an interaction between all the components. We consider
arbitrary scalings of Markov chains that lead to dynamics on two dominant time-scales: a fast
one — on which rapid fluctuations for a subset of components leads to geometric ergodicity;
and a slow one — on which the remaining subset of components converge to a solution of a
system of ordinary differential equations.

Perhaps the simplest example in the realm of chemical reactions is a model of enzyme kinetics

S + E
κ ′

1
⇌
κ ′

2

E S⇀κ ′
3 P + E, (1.1)

where S is the substrate, E the enzyme, E S the enzyme–substrate complex, and P the product.
Under appropriate scaling of the parameters, we can write the model as the solution of the system
(see (5.1) for the generator of the process)
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where Y1, Y2, Y3 are independent unit Poisson processes, and Z N
1 , Z N

2 , Z N
3 , Z N

4 are the scaled
amounts of substrate, free enzyme, enzyme–substrate complex, and product, respectively. Note
that M ≡ Z N

2 (t) + Z N
3 (t) is constant in time and we will also assume independent of the

scaling parameter N . The amount of substrate is an order of magnitude larger than the amount of
enzymes, and hence assumed to be proportional to the scaling parameter N . Due to the relatively
small fluctuations of the scaled amount of substrate the process Z N

1 can be approximated by
a deterministic one. The law of large numbers for this system goes back to Darden [9] and is
derived from the above system of equations in [20]. Specifically, it is shown that as N → ∞,
Z N

1 converges to the solution of

ẋ(t) = −
Mκ1κ3x(t)

κ2 + κ3 + κ1x(t)
, (1.2)

which, of course, is simply the Michaelis–Menten equation. The corresponding central limit
theorem for the scaled deviations N 1/3(Z N

1 − x(t)) is given in [21].



Please cite this article in press as: L. Popovic, Large deviations of Markov chains with multiple time-scales, Stochastic Processes and their
Applications (2018), https://doi.org/10.1016/j.spa.2018.09.009.

L. Popovic / Stochastic Processes and their Applications ( ) – 3

A less straightforward example is a model of packaged virus particle production

stuff
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⇀G, G

κ ′
2
⇀ T, T + stuff

κ ′
3
⇀ T + S (1.3)
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where T is the viral template, G the viral genome, S the viral structural protein that uses up
resources from the cell, and V is the pre-packaged material necessary for further proliferation
of the virus in another cell (the structural protein is packaged, but it affects the packaging rate
only in its order of magnitude). Under the appropriate scaling of the component amounts and
chemical rate constants we can write the model as the solution of (see (5.2) for the generator of
the process)
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where Yk , k = 1, . . . , 6 are independent unit Poisson processes, and Z N
1 , Z N

2 , Z N
3 , Z N

4 are the
scaled amounts of template, genome, structural protein, and viral package, respectively. The fast
fluctuating components are essentially evolving as a piecewise deterministic Markov process as
defined by [11] with Z1 a discrete component and Z3 continuous. Note that the scaled amount
of template and structural protein have large fluctuations relative to their amounts, while the
fluctuations of the scaled amount of genome are relatively small so the process Z N

2 can be
approximated by a deterministic one. The law of large numbers, obtained for the above system
of equations by adapting the results in [4], shows that as N → ∞, Z N

2 converges to a solution of

ẋ(t) = κ1 − κ2x(t) − κ6
κ3

κ5

κ2x(t)
κ4 + κ6x(t)

x(t), (1.4)

and the scaled deviations N 1/3(Z N
2 − x(t)), as can be shown by adapting the example in [21],

converge to a Gaussian process. In addition to two other examples, we provide large deviations
for the enzyme kinetics and viral production models.

Our results allow a great deal of generality for the original Markov process, requiring
only that it satisfies necessary technical assumptions on: the existence and uniqueness of
limiting processes on both time-scales and some control on their exponential growth; geometric
ergodicity of the occupation measure for the rapidly fluctuating subset of components, and
uniqueness for the limiting exponential operator of the remaining subset of components. They
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are general enough to allow the original Markov process to be a multi-scale jump–diffusion
with density dependent (non-Lévy) jump measure. Earlier results for such processes with a
Lévy measure driving the jump terms were given in [23]. We use the same proof methodology,
which relies on the general method for Markov processes developed in [17] based on non-linear
semigroups and viscosity methods, and a generalization of Barles and Perthame limit arguments
for PDEs given in [18].

Part of the motivation for this work was to develop results that can be useful in the context
of modelling chemical reaction networks. Results on large deviations for such models on a
single time scale can be found in the recent work of [1,2]. An application of the use of large
deviation results within a basic model of enzyme catalysis can be found in [10]. Some results
for Markov chain models of chemical kinetics on two (well-separated) time-scales were recently
proved in [25], using different techniques based on the approximation and change-of-measure
approach. Our results fully cover the extent of their conclusions and further extend them to more
general reaction systems with two time-scale effective dynamics. In particular, our results allow
the effective dynamics of the fast fluctuating component to be a combination of discrete and
continuous variables fully linked by piecewise deterministic Markovian dynamics (PDMP) as
defined in [11]. Most importantly our results do not assume the fast fluctuating component in the
original Markov process to be limited to a finite or bounded state space. This is an assumption
that has so far been assumed for all large deviation results on chemical reaction systems in
the literature. The generality of the exponential weak convergence approach combined with the
power of the viscosity solution technique allows all components to live in a non-compact subset
of Rd .

Our large deviation principle (LDP) for general multi-scale Markov chains is given in
Theorem 3.6. Our other goal was to verify its conditions for multi-scale chemical reaction
systems. Propositions 4.4 and 4.6 give a way to verify two technically challenging conditions:
exponential compact containment, and existence of a solution to an eigenvalue problem,
respectively. We also illustrate how they apply to give the LDP in the discussed examples of
enzymatic kinetics and viral production, as well as in two others.

Outline. Section 2 contains the terminology for large deviations and the relevant general tools.
Section 3 specifies a sequence of Conditions 3.1–3.4 that need to be verified and the statements of
the large deviation Theorem 3.6 and its Corollary 3.8. Section 4 identifies specific aspects of the
reaction network context that allows one to verify (or relax) the needed conditions for multi-scale
chemical reaction systems. Section 5 provides several examples of biologically relevant reaction
systems and explicitly verifies the conditions and obtains the LDP result. The Appendix contains
proofs of Theorem 3.6, Corollary 3.8, and Lemma 3.7.

2. Large deviations

For details and proofs regarding the following discussion see [17]. Let (S, d) be a metric
space. For N = 1, 2, . . . , let X N be a S-valued random variable. {X N

} satisfies the large
deviation principle with rate function I if for each open set A

lim inf
N→∞

1
N

log P{X N
∈ A} ≥ − inf

x∈A
I (x), (2.1)

and for each closed set B

lim sup
N→∞

1
N

log P{X N
∈ B} ≤ − inf

x∈B
I (x). (2.2)
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Using lower semicontinuous functions I , that is {x : I (x) ≤ c} is closed ∀c ∈ R, this definition
is equal to the requirement that

− I (x) = lim
ϵ→0

lim inf
N→∞

1
N

log P{X N
∈ Bϵ(x)} = lim

ϵ→0
lim sup

N→∞

1
N

log P{X N
∈ Bϵ(x)}. (2.3)

Typically, {x : I (x) ≤ c} is compact ∀c ∈ R, and then I is called a good rate function.
The notion of exponential tightness plays the same role in large deviation theory that tightness

plays in the theory of weak convergence.

Definition 2.1 (Exponential Tightness). A sequence of probability measures {µN } on S is
exponentially tight if for each a > 0, there exists a compact set Ka ⊂ S such that

lim sup
N→∞

1
N

logµN (K c
a ) ≤ −a.

A sequence {X N
} of S-valued random variables is exponentially tight if the corresponding

sequence of distributions is exponentially tight.

The approach we will take to proving our large deviation results is based on the following
theorem of Varadhan and Bryc (see [17] Proposition 3.8 or [12] Theorem 4.3.1 and 4.4.2). Let
Cb(S) be the space of all continuous bounded functions on S.

Theorem 2.2. Let {X N
} be a sequence of S-valued random variables.

(a) (Varadhan Lemma) Suppose that {X N
} satisfies the large deviation principle with a good

rate function I . Then for each f ∈ Cb(S),

lim
N→∞

1
N

log E[eN f (X N )] = sup
x∈S

{ f (x) − I (x)}. (2.4)

(b) (Bryc formula) Suppose that the sequence {X N
} is exponentially tight and that the limit

Λ( f ) = lim
N→∞

1
N

log E[eN f (X N )] (2.5)

exists for each f ∈ Cb(S). Then {X N
} satisfies the large deviation principle with good rate

function

I (x) = sup
f ∈Cb(S)

{ f (x) − Λ( f )}. (2.6)

We are interested in time-homogeneous Markov processes {X N (t)}t≥0 which will have sample
paths in the Skorohod space S = DE [0,∞). Assuming the limit (2.5) exists for sufficiently many
functions f , we can apply Theorem 2.2(b) to

Λt ( f, x) = lim
N→∞

1
N

log E[eN f (X N (t))
|X N (0) = x], (2.7)

to obtain the large deviation principle for the one dimensional distributions. But if we can show
exponential tightness for the distributions of {X N

}t≥0 on DE [0,∞), then the Markov property
gives the large deviation principle for the finite dimensional distributions which in turn gives the
large deviation principle for the processes in DE [0,∞), see Chapter 5 of [17] Theorem 4.28.

Suppose X N is a Markov processes with generator AN . Define

VN (t) f (x) =
1
N

log E[eN f (X N (t))
|X N (0) = x].
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Then by the Markov property, {VN (t)}t≥0 is a nonlinear contraction semigroup, that is,

VN (t + s) f (x) = VN (t)VN (s) f (x), s, t ≥ 0

and

sup
x

|VN (t) f1(x) − VN (t) f2(x)| ≤ sup
x

| f1(x) − f2(x)|,

and we can define a nonlinear exponential generator by

HN f (x) = lim
t→0

1
t

(VN (t) f (x) − f (x)) =
1
N

e−N f (x) AN eN f (x),

provided eN f is in D(AN ). Since it is HN that we typically know how to compute explicitly, it
is natural to ask for conditions on the sequence of generators {HN } that imply convergence of
{VN }. Observe that (2.7) is just the convergence of the semigroup VN . We define the “limit” as
N → ∞ of the sequence HN to be the set of {( f, g∗, g∗) ∈ Cb(E) × B(E) × B(E)} for which
there exists fN ∈ D(HN ) such that for xN ∈ E satisfying xN → x , fN (xN ) → f (x) and

g∗(x) ≤ lim inf
n→∞

HN fN (xN ) ≤ lim sup
n→∞

HN fN (xN ) ≤ g∗(x).

With the two examples from the introduction in mind, let us separate component-wise the
notation for the multi-scale Markov process Z N

= (X N , Y N ) so that X N satisfies a law of large
numbers while Y N has fast ergodic fluctuations. There are several complications to overcome.
Since it is only {X N (t)}t≥0 that converges to a deterministic limit, we are really only interested
in the large deviation behaviour for that sequence. Also, since the fluctuations of {Y N (t)}t≥0

average out, the “limit” of the sequence {HN }N→∞ will typically be a multi-valued operator. One
way to deal with identifying this limit is to select the functions fN (x, y) = f0(x) +

1
N f1(x, y)

in such a way that limN→∞ HN fN (x, y) = g(x) for some function g that is independent of
y. For geometrically ergodic processes Y N this can typically be accomplished by solving an
eigenvalue problem based on a perturbed operator for Y N . However, technical challenges still
remain in order to prove existence and uniqueness of the limiting semi-group by verifying the
“range condition” for the limiting non-linear operator.

For the processes in this paper, the state space of Z N will always be a subset of a Euclidean
space E N

⊆ Rd which converges, in the sense that E N
⊆ E = EX × EY ⊆ Rd is asymptotically

dense in Rd so that for each compact K ⊂ Rd ,

lim
N→∞

sup
(x,y)∈E∩K

inf
(xN ,yN )∈E N

|(x, y) − (xN , yN )| = 0.

This fact allows us to approach the problem of convergence of generators {HN } and semi-groups
{VN } by using the sequence of viscosity solutions of the associated Cauchy problems. Namely,
for each h ∈ Cb(EX ), the function

uh
N (t, x, y) := VN (t)h(x) =

1
N

log E[eNh(X N (t))
|(X N , Y N )(0) = (x, y)]

satisfies the non-linear partial integro-differential equation

∂t uN (t, x, y) = HN uN (t, x, y), in (0, T ] × EX × EY ; (2.8)

uN (0, x) = h(x), for (x, y) ∈ EX × EY .
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The goal is to show that viscosity solutions of (2.8) converge to a viscosity solution uh
0(t, x) of

the limiting equation

∂t u0(t, x) = H 0u0(t, x), in (0, T ] × EX ; (2.9)
u0(0, x) = h(x), for x ∈ EX ,

where the non-linear operator H 0 is to be identified from the limit of the non-linear generators
{HN }. In the viscosity method, existence will follow by construction, while uniqueness will be
obtained via the comparison principle. Thus, to show existence and uniqueness of the semi-
group limit (2.7) using this technique, one only needs to verify the convergence of uh

N to uh
0 for

sufficiently many initial value functions h, and to check the comparison principle for the limiting
Cauchy problem (2.9).

Convergence of uh
N to uh

0 can be proved based on a general construction of subsolutions and
supersolutions to two families of operators: {H0(·;α)}α∈Λ and {H1(·;α)}α∈Λ, which are meant
to “sandwich” the limiting operator H 0 (see [18]). A comparison principle between viscosity
subsolutions of infα∈Λ{H0(·;α)} and viscosity supersolutions of supα∈Λ{H0(·;α)} in conjunction
with the “operator inequality” between infα∈Λ{H0(·;α)} and supα∈Λ{H0(·;α)} will imply the
desired convergence. The proof of uniqueness of the solution u0 to the limiting problem then has
to be shown by the weak comparison principle for the Cauchy problem (2.9). Knowledge of the
eigenvalue characterization of H 0 in the limiting problem (2.9) can be used in this process. The
remainder of the proof of the large deviations result comes from showing exponential tightness
of {X N

} (Definition 2.1) and using Bryc formula (Theorem 2.2(b)).

3. Markov processes on multiple time-scales

The Markov processes we are interested in have generators of the form

A f (z) =

∑
k

λk(z)( f (z + ζk) − f (z)), (3.1)

with k indexing the different jumps of size ζk which occur at density-dependent rates λk(z).
We assume the rates are non-negative, locally Lipschitz and locally bounded. Although, we
could have allowed the jump sizes to be state dependent as well, for simplicity we let ζk be
constant. We use powers of a parameter N to scale individual component sizes Z N

i = N−αi Z i
and scale density-dependent jump rates λk(z) = NβkλN

k (zN ) leading to generators of the form,
for f ∈ D(AN ) ⊂ C(E N ),

AN f (z) =

∑
k

NβkλN
k (z)( f (z + N−αζ N

k ) − f (z)), (3.2)

where N−α is the diagonal matrix with entries N−αi . The nonlinear generator has the form, for
eN f

∈ D(AN ),

HN f (z) =
1
N

∑
k

NβkλN
k (z)(eN ( f (z+N−αζ N

k )− f (z))
− 1). (3.3)

3.1. Model assumptions

Separating the components into Z N
= (X N , Y N ) we need to make some assumptions on the

dynamics of the rescaled Markov process on two time-scales. We start with a general look at the
needed conditions.



Please cite this article in press as: L. Popovic, Large deviations of Markov chains with multiple time-scales, Stochastic Processes and their
Applications (2018), https://doi.org/10.1016/j.spa.2018.09.009.

8 L. Popovic / Stochastic Processes and their Applications ( ) –

Let L0, L1 be the linear operators defined on D(L0) = C2
c (EX ), D(L1) = C2

c (EX × EY )
respectively, given by

L0 f (x) =

∑
k

λk(x )̃ζ X
k · ∇x f (x), (3.4)

L1 f (z) =

∑
k:βk=1

λ̃k(z)( f (x, y + ζ̃ Y
k ) − f (x, y)) +

∑
k:βk>1

λ̃k(z)̃ζ Y
k · ∇y f (x, y), (3.5)

with non-negative, locally Lipschitz, locally bounded functions λk and λ̃k , and with R|EX |-valued
and R|EY |-valued vectors ζ̃ X

k and ζ̃ Y
k respectively. Here λk, λ̃k and ζ̃ X

k , ζ̃ Y
k are determined by the

jump rates λN
k (z) and sizes ζ N

k from (3.2) by the convergence conditions we impose next. Suppose
the rescaled Markov process Z N satisfies the following.

Condition 3.0 (General Conditions). The generator AN given by (3.2) satisfies

lim
N→∞

sup
z∈E N

|AN f (z) − L0 f (z)| = 0, ∀ f ∈ D(L0)

lim
N→∞

sup
z∈E N

|
1
N

AN f (z) − L1 f (z)| = 0, ∀ f ∈ D(L1)

For some generator H 0 on C2
c (EX ) the exponential generator HN given by (3.3) satisfies

lim
N→∞

sup
z∈E N

|HN fN (z) − H 0 f (z)| = 0,

∀ f ∈ D(H 0) and eN fN ∈ D(AN ) chosen so that limN→∞supz∈E N | fN (z) − f (z)| = 0.

The first convergence condition essentially insures that the slow component X N has a
deterministic limit. The second convergence condition insures that the fluctuations of the fast
component Y N on the time-scale t N have a limit that is either deterministic, a Markov chain
or a piecewise-deterministic Markov chain. The latter is a Markov process with a discrete and
a continuous component, where the discrete component jumps while the continuous component
follows deterministic dynamics, with the jump rate and the deterministic flow determined from
the value of both the discrete and the continuous component (see [11]). These two convergence
conditions describe a separation of time scales which is a common occurrence in stochastic
models of intracellular dynamics: fast fluctuations on the time scale t N are described by a
limiting generator L1 and slow fluctuations on the time scale t are described by L0 in the limit.

We next provide a sequence of explicit conditions for a large class of rescaled Markov chains
with effective dynamics on two time-scales, and show that the above general conditions hold.

Condition 3.1 (Scaling Parameters). Let IX and IY denote indices of components belonging to
X N and Y N respectively. Recalling the scaling parameters αi of the components Z N

i and scaling
parameters βk of the jump rates λN

k , let β(i) = maxk{βk : ζ N
ik ̸= 0} be the maximal jump rate

that affects the component i ∈ IX ∪ IY . Then

∀i ∈ IX : αi ≥ 1 and β(i) ≤ αi ,

∀ j ∈ IY : α j ≥ 0 and β( j) ≤ 1 + α j .

There is at least one i ∈ IX with αi = 1 and at least one j ∈ IY with β( j) = 1 + α j .
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The first condition above requires that all the components of X N are of size at least N , and
that jumps that change their amounts occur at rate at most N . The second condition insures that
the separation of time-scales between fluctuations of X N and Y N is at least of order N . The last
condition implies that our choice of the scaling parameter N reflects both the smallest size of
the slow components and the largest separation to the time-scale of fast fluctuations. Under this
condition on the scaling parameter it is reasonable to consider a large deviations result at “speed”
N .

We can describe the effective dynamics on each time-scale if we consider the effective change
(̃ζ X , ζ̃ Y ) to each component due to jumps of the process. For each i ∈ IX let

ζ̃ X
ik = ζ N

ik if βk = αi and ζ̃ X
ik = 0 if βk < αi , (3.6)

and for each j ∈ IY let

ζ̃ Y
jk = ζ N

jk if βk = 1 + α j and ζ̃ Y
jk = 0 if βk < 1 + α j . (3.7)

Likewise we let λ̃k(z) = limN→∞λ
N
k (z) denote the effective rates of change, though in many

instances we will simply have λ̃k = λk . Using effective changes and rates we will see that
Conditions 3.1, together with subsequent Conditions 3.3–3.4 on the behaviour of Y N , will imply
the convergence of the sequence of generators AN from (3.2) to the generator L0 given in (3.4)
operating on the slow variables only, as well as the convergence of the sequence of scaled
versions of these generators 1

N AN to a generator L1 given in (3.5). Stochastic averaging will
provide the averaged effective rates in L0 to be λk(x) =

∫
λ̃k(z)π x,0(dy), where π x,0(·) is the

stationary distribution for the process Y x,0 with generator L x,0
1 in (3.9).

Standard assumptions on the effective processes on both time-scales are as follows. Let

b0(z) =

∑
k

λ̃k(z)̃ζ X
k , b1(z) =

∑
k:βk>1

λ̃k(z)̃ζ Y
k , c(z) =

∑
k:βk=1

λ̃k(z)|̃ζ Y
k |.

Condition 3.2 (Lipschitz and Growth). There exists K1 > 0 such that ∀z, z′
∈ E

|b0(z) − b0(z′)| + |b1(z) − b1(z′)| + |c(z) − c(z′)| ≤ K1|z − z′
|,

and there exists K2 > 0 such that ∀z ∈ E

|b0(z)| + |b1(z)| ≤ K2|z|, sup
y

c(x, y) < ∞, ∀x ∈ EX .

These conditions insure existence and uniqueness of the deterministic process on time-scale
t given by the differential operator (3.4), and of the piecewise deterministic Markov process
on time-scale Nt given by the mixed operator (3.5). However, if existence and uniqueness of
processes defined by (3.4) and (3.5) can be established by other means, for example by conditions
that control their overall growth, then we can drop the above conditions and assume only that
the drift coefficients b0, b1 are locally Lipschitz and locally bounded (as is implied by same
assumptions on λk). We will provide conditions for dropping the global Lipschitz conditions on
models of chemical reaction systems in the next Section.
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We next consider the form of the exponential generator (3.3) applied to functions of the form
fN (x, y) = f (x) +

1
N g(x, y)

HN fN (x, y) =
1
N

∑
k

NβkλN
k (z)(eN ( fN (z+N−αζ N

k )− fN (z))
− 1)

=

∑
k:βk=1

λN
k (z)

(
eN ( f (x+N−αζ N

k )− f (x))+(g(z+N−αζ N
k )−g(z))

− 1
)

+

∑
k:βk>1

NβkλN
k (z)N−αζk · ∇ f (x) +

∑
k:βk>1

Nβk−1λN
k (z)N−αζk · ∇g(x, y)

+

∑
k:βk>1

Nβk−1λN
k (z)

(
eN ( f (x+N−αζ N

k )− f (x))+(g(z+N−αζ N
k )−g(z))

− N 1−αζ N
k · ∇ f (x)

− N−αζ N
k · ∇g(x, y) − 1

)
.

Using constraints from Conditions 3.1 we have that the last row above has zero limit since:
βk + 1 ≤ 2αi for any i ∈ IX , and βk + 1 = 2αi holds only if αi = βk = 1 (as βk ≤ αi , αi ≥ 1);
βk − 1 ≤ 2α j for any j ∈ IY , and βk − 1 = 2α j implies α j = 0, βk = 1 (as βk ≤ α j + 1). In the
limit the effective changes (̃ζ X , ζ̃ Y ) that we defined in (3.6)–(3.7) appear as

lim
N→∞

HN fN (x, y) =

∑
k:βk=1

λ̃k (z)
(
eζ̃

X
k ·∇ f (x)

− 1
)
+

∑
k:βk=1

λ̃k (z)eζ̃
X
k ·∇ f (x)(eg(x,y+ζ̃Y

k )−g(x,y)
− 1

)
+

∑
k:βk>1

λ̃k (z)̃ζ X
k · ∇ f (x) +

∑
k:βk>1

λ̃k (z)̃ζ Y
k · ∇y g(x, y).

We let

V (y; x, p) =

∑
k:βk=1

λ̃k (z)
(
eζ̃

X
k ·p

− 1
)
+

∑
k:βk>1

λ̃k (z)̃ζ X
k · p (3.8)

denote the (Hamiltonian) “potential” from the effective slow process, and the operator

Lx,p
1 f (x, y) =

∑
k:βk=1

λ̃k (z)eζ̃
X
k ·p( f (x, y + ζ̃ Y

k ) − f (x, y)) +

∑
k:βk>1

λ̃k (z)̃ζ Y
k · ∇y f (x, y) (3.9)

denote the “perturbed” version of the effective dynamics of the fast process. Then we can
formulate the limit of the sequence of exponential generators on this type of functions as

lim
N→∞

HN fN (x, y) = V (y; x,∇x f (x)) + e−g(x,y)L x,∇x f (x)
1 eg(x,y). (3.10)

In order for the limiting operator to be a function of x only, we aim to select g in such a way
that the right-hand side does not depend on y. Let p = ∇x f (x), and suppose for some positive
function g (representing eg) the limiting operator in (3.10) solves the eigenvalue problem for the
operator V (y; x, p) + L x,p

1 : for all x ∈ EX , p ∈ R(
V (y; x, p) + L x,p

1

)
g(x, y) = H 0(x, p)g(x, y). (3.11)

Let H 0(x, p) be the principal (“largest”) eigenvalue for the operator V (y; x, p) + L x,p
1 . In that

case H 0(x, p) does not depend on g (it is a function of the dominant term f of fN only) and the
convergence assumption in Condition 3.0 provides a single valued limit

lim
N→∞

HN fN (x, y) := H 0(x,∇x f (x))

operating on the slow variables only. We will use a method that relies on solutions of partial
integro-differential equations (PIDEs) to show the sequence of exponential generators HN when
applied to functions of the form fN converge to H 0 applied to f .
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Having established a candidate for the limiting operator H 0 one further needs to establish
exponential tightness for the slow process {X N

} and for the occupation measures of the fast
process {Γ N (·,C)}, where

Γ N (t,C) =

∫ t

0
1C (Y N (s))ds.

The next two conditions insure multiplicative ergodicity of the occupation measures and
exponential stability of the dynamics for the effective fast process perturbed by the directional
changes of the slow process. We will show that exponential tightness will follow when we
combine these conditions with control of the growth of the slow process and with convergence
of the exponential generators.

Condition 3.3 (Transition Density). For each x ∈ EX , p ∈ R the process Y x,p defined by the
generator (3.9) is Feller continuous with transition probability px,p

t (y, dy) which at t = 1 has a
positive density with respect to some reference measure α(dy) on EY .

Condition 3.4 (Lyapunov I). There exists a positive function ϕ(·) ∈ C1(EY ) with compact level
sets and such that for each compact K ⊂ R, θ ∈ (0, 1] and l ∈ R there exists a compact set
Al,θ,K ⊂ EY satisfying

{y ∈ EY : −θe−ϕL x,p
1 eϕ(y) − |V (y; x, p)| ≤ l} ⊂ Al,θ,K , ∀p ∈ K ,∀x ∈ EX , (3.12)

and for each x ∈ EX , p ∈ R|EX | there exists Kx,p > −∞ such that ∀z ∈ E

V (y; x, p) ≥ Kx,p, ∀y ∈ EY .

The transition density condition was first given in [14] to insure a large deviation result for
the occupation measures of a Markov process, which we impose on the process Y x,p determined
by the generator L x,p

1 from (3.9). Together with the Lyapunov condition it implies that for each
(x, p) there exists a unique stationary distribution for Y x,p (see [17] Lemma 11.23, also [22]).
Different versions of such conditions are given in [17] Condition 11.21 (also, see Appendix B
for other related references). We will discuss conditions for piecewise deterministic Markov
processes given by a perturbation of (3.5) which can be used to verify multiplicative ergodicity
and exponential stability in the next Section.

In some cases it will suffice to verify exponential stability of the effective fast process using an
(x, p)-dependent function for the Lyapunov condition. This condition together with a version of a
condition on the transition kernels implies Condition (DV3+) in [22] for verifying multiplicative
ergodicity and establishing a large deviation principle for the occupation measure of single time
scale Markov processes.

Condition 3.5 (Lyapunov II). For each p in a compact set K ⊂ R and for each x ∈ EX there
is a positive function ϕx,p(·) ∈ C1(EY ) with compact level sets such that there exist c > 1 and
dx,p < ∞ satisfying

e−ϕx,p L x,p
1 eϕx,p (y) ≤ −c|V (y; x, p)| + dx,p, ∀y ∈ EY . (3.13)

where we assume that |V (y; x, p)| has compact level sets.

Finally, uniqueness of the limiting operator H 0 needs to be either assumed or established. We
will consider the first option in our main (upcoming) Theorem and the second in its Corollary.
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3.2. Large deviation principle for the two time-scale model

We can now present the large deviation result for the Markov process on two time-scales.

Theorem 3.6. Assume Conditions 3.1–3.4 hold as well as the weak comparison principle for the
Cauchy problem:

∂t u0(t, x) = H 0(x, ∂x u0(t, x)), for (t, x) ∈ (0, T ] × EX (3.14)

u0(0, x) = f (x), for x ∈ EX ,

with H 0 defined by (3.10). Then the sequence {X N (t)} is exponentially tight and satisfies a large
deviation principle with speed N and good rate function I given by the variational principle:

I (x, x0, t) = sup
f ∈Cb(EX )

{ f (x) − u f
0 (t, x0)}, (3.15)

where u f
0 is the unique continuous viscosity solution of (3.14).

The proof of Theorem 3.6 mainly follows the argument in [23]. We show that this argument
can be carried through for processes generated by more general (non-Lévy) jump terms and
without diffusions. Key ingredients in this proof are: (1) multiplicative ergodicity of the effective
fast process (perturbed by the value of the slow process and its drift) which insures exponential
control on the behaviour of its occupation measure; and (2) exponential stability for the dynamics
of the effective fast process (in a potential generated by the slow process) which insures
exponential compact containment and tightness. The proof is given in Appendix A.1 in the
Appendix.

Much of the proof concentrates on proving the convergence of solutions to Cauchy problem
(2.8) via a sequence of sub- and super-operators which sandwich the limiting operator H 0. A part
of this proof can be significantly simplified when we know the principle eigenvalue problem with
H 0 has a solution and we make use of its associated positive eigenfunction. Being able to solve
the eigenvalue problem explicitly relies on the form of the rates λk as well as on some of the
structural properties of the Markov process itself. For polynomial λk there is a class of models
(see Condition 4.5) for which we can explicitly solve for the eigenvalue and eigenfunction of
(3.11). We will discuss a procedure for solving H 0 for models of chemical reaction systems in
the next Section.

Having an expression for H 0(x, p) also allows for a relatively easy verification of the
comparison principle for the limiting Cauchy problem (3.14) by using the following result. The
proof of this result is based on the theory of discontinuous viscosity solutions (see either [5]
Chapter V, or [19] Chapter VII) and is contained in Appendix A.3 of the Appendix. For
definitions of lower semicontinuous viscosity sub- and upper semicontinuous super-solutions
for discontinuous functions and of the weak comparison principle we refer to [19] VII Definition
4.2 and VII Definition 7.1.

Lemma 3.7. Suppose u1 and u2 are, respectively, a bounded upper semicontinuous (USC)
viscosity sub-solution and a bounded lower semicontinuous (LSC) viscosity super-solution of
(3.14) for some T > 0 and EX ⊂ Rd . Either of the following conditions are sufficient for the
weak comparison principle for (3.14) to hold:



Please cite this article in press as: L. Popovic, Large deviations of Markov chains with multiple time-scales, Stochastic Processes and their
Applications (2018), https://doi.org/10.1016/j.spa.2018.09.009.

L. Popovic / Stochastic Processes and their Applications ( ) – 13

(a) H 0 is such that for all λ ≥ 1, R > 0 and for all |p|, |q| ≤ 1, |x |, |y| ≤ R and for some
continuous non-decreasing functions ωR, ω̃1 : R+ ↦→ R+ with ωR(0) = ω̃1(0) = 0

H0(y, λ(x − y) + p) − H0(x, λ(x − y) + q) ≤ ωR(|x − y| + λ|x − y|
2) + ω̃1(|p − q|); (3.16)

(b) H 0 is such that for all λ ≥ 1, R, ℓ > 0 and for all |p|, |q| ≤ 1, |x |, |y| ≤ R with
λ|x − y| < ℓ, and for continuous non-decreasing functions ωR,ℓ, ω̃1 : R+ ↦→ R+ with
ωR,ℓ(0) = ω̃1(0) = 0 the inequality (3.16) holds with ωR,ℓ in place of ωR; and H 0 satisfies
a coercivity condition in p uniformly for bounded x, i.e. for any R > 0

inf
|x |≤R

|H 0(x, p)| → ∞ as |p| → ∞. (3.17)

If H 0 is convex in p and limr→∞|H 0(x, r p)| → ∞ for each x, p, then (3.17) holds.

We now have a more easily verified large deviation result for multi-scale Markov processes.

Corollary 3.8. Assume Conditions 3.1–3.3 and 3.5 hold, without necessarily a lower bound on
V (y; x, p) but assuming |V (y; x, p)| has compact level sets. Suppose the principal eigenvalue
problem (3.11) for H 0(x, p) can be explicitly solved, and either of the conditions (a) or (b) from
Lemma 3.7 hold. Then the large deviation principle for {X N

} as stated in Theorem 3.6 holds.

The proof of Corollary 3.8 is centred on simplifying the construction of the approximating
sequence of operators from the proof of Theorem 3.6. In order to do so it uses the positive
eigenfunction in the principle eigenvalue problem for H 0. The proof is given in Appendix A.2
in the Appendix. Its practical advantages are that it allows one to use a Lyapunov function
dependent on the variable for the slow process; and it simplifies establishing uniqueness of the
limiting operator H 0. Note that if the state space for the fast process is compact one can trivially
take ϕ = 0 in either (3.12) or (3.13). Moreover, if the state space is non-compact, the process
of finding the explicit solution for the eigenvalue problem can be adapted to find the Lyapunov
function ϕx,p as well. We will discuss finding candidates for the Lyapunov functions in the next
Section.

To extend the above results, from either Theorem 3.6 or Corollary 3.8, from finite dimensional
distributions of {X N (t)} to pathwise large deviation principle for {X N

} can be done by the
argument from Theorem 4.28 of [17]. This will require using a variational representation of
the operator H 0(x, p) and characterizing an expression for the rate function from its Fenchel–
Legendre transform ([17] Section 8.6.1, [16]). This is the characterization of the rate functions
given in [25].

4. Chemical reaction networks on multiple time-scales

We now apply our large deviation results to models of multi-scale chemical reaction networks.
Continuous-time Markov chains have found an important application for modelling chemical
reactions describing cellular metabolic, gene regulatory and signal transduction processes, since
variability in genetically identical cells was in the past two decades shown to be due to inherent
noise of biochemical reactions within each cell [26,15]. A stochastic model of an intra-cellular
chemical reaction network treats the system as a continuous-time Markov chain with generator
of the form (3.1) whose state Z is a vector giving the number of molecules of different types of
chemical species that are relevant. Each reaction is modelled as a possible transition for the state.
The model for the kth reaction, for each k, is determined by a vector of inputs ν ′

k specifying the
number of molecules of each chemical species that are consumed in the reaction, and a vector of
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outputs νk specifying the number of molecules of each species that are produced in the reaction.
Transition rate for the kth reaction λk(z) is a function of the state z, and the state change of kth
reaction is given by ζk = ν ′

k − νk .
Reaction rates in chemical networks are most commonly modelled by dynamics of mass-

action type: in the stochastic version of the law of mass action, the rate function is proportional
to the number of ways of selecting the molecules that are consumed in the reaction:

λk(z) = κ ′

k

∏
i

νik !
∏

i

(
zi

νik

)
= κ ′

k

∏
i

zi (zi − 1) · · · (zi − νik + 1), (4.1)

making λk(z) a product of abundances of all the species going into the reaction and of a chemical
reaction constant κ ′. Physically, |νk | =

∑
iνik is usually assumed to be less than or equal to

two, which makes the task of controlling the growth of coordinates much easier. In some models
a few reaction rates can be given in terms of a sigmoid function. This is often the result of
approximating the overall outcome of a subnetwork of reactions through a model reduction
procedure. Nonetheless, in all cases encountered in the literature the jump rates are locally
Lipschitz and locally bounded, though, as is the case in binary reactions, they are not always
globally Lipschitz.

We next discuss satisfying the conditions needed for Theorem 3.6 and for Corollary 3.8 to
apply in models of chemical reaction networks, and specify when they can be relaxed. Multiple
scalings of intra-cellular chemical reaction processes arise naturally due to low copy numbers
of various key chemical species types. In other words, species i can be in abundance of order
Nαi in the system, where typically N is the order of magnitude of the most abundant species and
αi ∈ [0, 1]. Each species is then represented by a component with its rescaled size Z N

i = N−αi Z i .
In addition, varying strengths in chemical bonds formed or broken by different reactions lead to
different orders of magnitude, that can be expressed in terms of N , for the different chemical
reaction constants κ ′

i . We combine the scaling of constants κ ′

i together with the effect of rescaling
species amounts into a single rescaling of the reaction rates as λk(z) = Nβkλk(zN ), where
typically βk > 0. The rescaled chemical reaction network then becomes a multi-scale Markov
process on E N

⊂ Rd
+

with generator of the form (3.2).
We are interested in models of intercellular reactions whose dynamics has a multi-scale

behaviour with two separated time-scales as in Conditions 3.1. This means that in the reaction
networks there is a group of discrete species present in small counts O(1) and the rest, continuous
species, are present in larger amounts approximated by O(N ). Their intertwined reactions
dynamics consists of fast O(N ) fluctuations for the discrete species and slow O(1) changes
of the continuous species. The effective changes ζ̃k are typically the same as the net reaction
changes ζk , except in instances when the order αi of some species i with ζki ̸= 0 is smaller than
the order βk of λk and the effective change ζ̃ki = 0 (see, for example, species V in reaction (6)
of the viral production model from the Introduction).

A reaction network often involves a few binary reactions with a quadratic rate, so for the
effective processes to exist and be unique one needs the overall depletion rates for each species
to balance out their overall production rates, insuring that all amounts are globally stable. Many
multi-scale Markov models have global existence and uniqueness with only local Lipschitz and
growth of jump rates: the deterministic dynamics of the effective slow process (governed by
growth of the drift b0(z)) may be globally controlled; and the piecewise deterministic Markov
process (which is often simply a Markov chain) may have global stability (determined by the
local drift b1(z) of the continuous part and the overall jump rates c(z) of the discrete part) for
each fixed value of the slow process. In that case Condition 3.2 is not necessary and instead
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Condition 4.1 on the binary rates (discussed in the next subsection) should be verified. We
prove in Proposition 4.4 a truncation argument with which the requirement of globally Lipschitz
coefficients can be relaxed (both the enzyme kinetics and the viral production model have some
binary reaction rates that can be accommodated by this result).

The effective fast process perturbed by the direction of change of the slow process (given by
generator (3.9)) is in general a piecewise deterministic Markov process (though sometimes it is
simply a Markov chain). Exponential stability and positivity of its transition density assumed in
Condition 3.3 can be verified using recent results on piecewise deterministic processes [3] (see
also [7] Ch 4). To summarize the conclusions, suppose the discrete component of this piecewise
deterministic Markovian dynamics (PDMP) has jump rates such that their infimum over the
continuous component yields an irreducible and positive recurrent Markov chain. Moreover,
suppose that for all values of the discrete component the generator of the continuous component
satisfies a drift condition with respect to the same Lyapunov function. Finally, suppose that the
flow satisfies a Hoermander-type bracket (hypoellipticity) condition at a point of the continuous
component. Then, at this point, the process has a positive transition probability with non-trivial
absolutely continuous part with respect to Lebesgue measure. These results are particularly
useful when the state space for the effective fast process is non-compact and having a positive
transition density is non-trivial.

In models where the state space EY for the fast process is compact verifying the exponential
Lyapunov Condition 3.4 is unnecessary. In the non-compact case we need to look for a candidate
function ϕ based on both the dynamics of perturbed effective fast process with generator L x,p

1 ,
and on the potential function |V (y; x, p)|. For multi-scale processes for which we can explicitly
solve the eigenvalue problem (3.11) we can relax this condition and instead verify the Lyapunov
Condition 3.5, and look for a candidate function ϕx,p dependent on the value and direction of
change of the slow process. Moreover, such a function can be found by a similar procedure
according to which one can find the positive eigenfunction of the EVP (see, for example, the
models of down-regulation and of viral production in Examples section, both of which have
an unbounded fast variable). For practical purposes, with Condition 4.5 and Proposition 4.6 we
provide a procedure for solving the EVP for principal eigenvalue and positive eigenfunction
explicitly.

4.1. Truncating the jump rates

Many chemical reaction networks involve a few binary reactions whose rates have quadratic
growth. Our goal is to truncate these jump rates and prove the large deviation result using
Theorem 3.6 on a process with truncated rates. Let us illustrate this on the examples from the
Introduction. In the model of enzymatic kinetics (1.1) the sum of enzyme and enzyme–substrate
abundances together is conserved by the system, so Z2(t) + Z3(t) ≡ M is constant in time.
Consequently, the rate of enzyme–substrate production S + E ⇀ E S satisfies λ1(z) = κ1z1z2 ≤

κ1 Mz1, and this quadratic rate is in fact at most linear. In the model of viral production (1.3),
there is a quadratic reaction rate λ6(z) = κ6z1z2 for the viral packaging G + T + (S) ⇀ V . There
is no conservation law in the system, but the viral genome G is slowly varying, its rate of increase
is given only by ∅ ⇀ G and is bounded by a constant. This allows us to have exponential control
on how large the factor G can get. As we will see, from the point of view of large deviations, this
quadratic reaction rate can consequently be replaced with versions that are at most linear.

We say that a “general conservation law” holds for a subset of species, if a linear combination
of those species is left unchanged by all the reactions in the network (for example, in the model
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of enzyme kinetics (1.1) the enzyme and the enzyme–substrate are in one such conservation law).
We make the following assumption on the jump rates.

Condition 4.1. Suppose that for each k there are non-negative constants θk,0 and θk = {θk,i } so
that

λk(z) ≤ (θk,0 +

∑
i

θk,i zi )(
∑

i

zi ), (4.2)

and for each k we have either:
(i) all species i for which θk,i > 0 are part of a general conservation law, that is, θk,i > 0

implies θ̃i > 0, where θ̃ = {θ̃i } is such that all net changes satisfy

ζk · θ̃ = 0, ∀k;

or:
(ii) all species i for which θk,i > 0 are part of the slow process, and rates of all those reactions

with a net increase of species combinations given by θk satisfy∑
k:ζk ·θk,i>0

λk(z) ≤ C ′, for some C ′ < ∞.

For rates that are specified in “mass-action” form the Condition (4.2) requires that in all binary
reactions at least one of the reactants Si must satisfy θk,i > 0. Also, if that reactant is part of the
fast process it must be part of a conservation law (there can be multiple conservation laws in the
system), or if it is part of the slow process it is created only by reactions with bounded rates,
for example, reactions such as ∅ ⇀ Si or reactions S j ⇀ Si for some species S j of bounded
abundance.

We need to introduce a notion that will describe what happens to the process once we truncate
its jump rates, and justify why it is useful in the context of large deviation results (this is Theorem
4.2.16 in [12]).

Definition 4.2 (Exponential Approximation). The sequence {X N ,M
} is an exponentially good

approximation of {X N
} if for every ϵ > 0

lim
M→∞

lim sup
N→∞

1
N

log P{|X N
− X N ,M

| > ϵ} = −∞.

Theorem 4.3. Suppose for each M the sequence {X N ,M
} satisfies a large deviation principle

with rate function IM and suppose {X N ,M
} is an exponentially good approximation of {X N

}.
Then

(a) {X N
} satisfies a weak large deviation principle (meaning that (2.1) holds for each open

set A while (2.2) only holds for each compact set B) with rate function

I (y) = sup
ϵ>0

lim inf
M→∞

inf
z∈Bϵ (y)

IM (x).

(b) If I (·) is a good rate function (sublevel sets are compact) and for each closed set B

inf
y∈B

I (y) ≤ lim sup
M→∞

inf
y∈B

IM (y),

then {X N
} satisfies the large deviation principle with rate function I .

The following result is very useful in some models of chemical reaction systems.
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Proposition 4.4. Assume Condition 4.1 holds and that the initial value satisfies P{X N (0) · θk ≤

C} = 1 for some C < ∞ and all θk as in (4.2). Then for all large enough M < ∞ replacing the
jump rates λk(z) of the Markov process X N by λk(z) ∧ (θk,0 + M)(

∑
i zi ) produces a sequence of

processes {X N ,M
} that is an exponentially good approximation of {X N

}, that is

lim sup
N→∞

1
N

log P{sup
s≤t

|X N (t) − X N ,M (t)| > 0} ≤ c(t) − M.

Proof. In case (i) holds for reaction k the assumption on θ̃ implies that θ̃i = ak,iθk,i for some
ak,i > 0. The conservation law implies that X N (t) · θ̃ = X N (0) · θ̃ for t > 0. The assumption on
the initial value implies

X N (t) · θk ≤ (max
k,i

1
ak,i

)X N (t) · θ̃ = (max
k,i

1
ak,i

)X N (0) · θ̃ ≤
maxk,i ak,i

mink,i ak,i
C.

So as soon as M ≥
maxk,i ak,i
mink,i ak,i

C we have that P{
∑

iθk,i X N
i (t) ≤ M} = 1, and we can replace the

rates λk(z) by λk(z) ∧ (θk,0 + M)(
∑

i zi ) without altering the process.
In case (ii) holds we make use of the martingales

exp
{

N
(
X N (t) · θk − X N (0) · θk −

∫ t

0

∑
k

Nβk−1λN
k (X N (s))

(
eN1−αζk ·θk − 1

)
ds

)}
to obtain for any M < ∞ and stopping time τ N for X N that

lim sup
N→∞

1
N

log P{sup
s≤t

X N (s) · θk ≥ M}

≤ lim sup
N→∞

1
N

log
E[eN X N (t∧τ N )·θk ]

eN M

≤ lim sup
N→∞

1
N

log
E[exp{N

(
X N (0) · θk +

∫ t∧τ N

0 λk (X N (s))
∑

k:ζk ·θk>0 Nβk−1(eN 1−αζk ·θk − 1
)
ds)}]

eN M

≤ C + C ′t(emaxk:βk =1, ζk ·θk>0 ζ̃
X
k ·θk + max

k:βk>1,ζk ·θk>0
ζ̃ X

k · θk ) − M = c(t) − M.

In the last inequality we used the assumption P{
∑

k:ζk ·θk>0λk(X N (t)) ≤ C ′
} = 1 for ∀t ≥ 0, and

that since ζk · θk = ζ X
k · θk

lim
N→∞

∑
k:ζk ·θk>0

Nβk−1(eN1−αζk ·θ
− 1) =

∑
k:βk=1, ζk ·θ>0

(eζ̃
X
k ·θ

− 1) +

∑
k:βk>1, ζk ·θ>0

ζ̃ X
k · θ.

Let X N ,M be the process with the same chemical reaction network properties (same ζk, αi , βk, Yk)
except we replace the rates λk(z) by λk(z) ∧ (θk,0 + M)(

∑
i zi ). On the event {sups≤t X N (s) · θk <

M} the processes X N and X N ,M are the same, hence

lim sup
N→∞

1
N

log P{sup
s≤t

|X N (s) − X N ,M (s)| > 0}

≤ lim sup
N→∞

1
N

log P{sup
s≤t

X N (s) · θk ≥ M} ≤ c(t) − M. □

4.2. Solving the eigenvalue problem

In order to apply Theorem 3.6 we also need to show the comparison principle for the limiting
Cauchy problem (3.14). It insures that we can identify the limiting semi-group (2.7) in Bryc
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formula from our convergence arguments. Theory for uniqueness of viscosity solutions says
that the comparison principle will hold if the conditions provided by Lemma 3.7 are satisfied.
They are similar to the conditions for proving comparison principle for operator themselves (see
Lemma 9.2 [17] or Proposition 7.7 [8]). There is an advantage in having an operator which is
convex and coercive in p, as then we only need to check these conditions on compact subsets
of EX × R (see option (b) in Lemma 3.7). This can easily be verified if H 0 can be explicitly
calculated.

In order to explicitly calculate H 0 we need to solve the EVP (3.11) for the principal
eigenvalue, finding the positive eigenfunction g = eu1(x,y) in the process. Let us illustrate the
conditions we need on the examples from the Introduction. The key feature in both the enzyme
kinetics network (1.1) and in the viral production network (1.3) is that the dynamics of the
effective processes has rates that are linear in the fast variables, and that the effective changes of
the fast process take values in {−1, 0, 1}.

In the model of enzyme kinetics (1.1), the effective dynamics of the fast process is a pure
Markov chain. The fast variables are E and E S, but due to a conservation law between them,
there is effectively only one fast variable, say E , in amount y. Since the rates in the effective
process are linear in y, and since we need a positive eigenfunction g, we can look for an
eigenfunction whose logarithm is linear in it as well. That is, we let g = ea(x)y , where the
function a(x) of the amount x of the slow variable S is to be determined. We need to insure that
V (y; x, p) + e−a(x)y L x,p

1 ea(x)y is a function of x only (see Section 5.1 for the evaluation of this
expression and others in this explanation). Since the rates appearing in V and L x,p

1 are linear in y,
this function is linear in y as well. After grouping all the terms we set the coefficient of y to zero
in order to determine a(x). From (3.9) we see that a(x) appears in the function e−a(x)y L x,p

1 ea(x)y

only in the form of eζ̃
Y
k a(x), and because the effective changes of the fast process satisfy

ζ̃ Y
k ∈ {−1, 0, 1}, a(x) appears only as {ea(x), e0, e−a(x)

}. Setting the coefficient next to y equal
to zero for all x leads to a quadratic equation in ea(x), which under appropriate conditions will
have a unique positive solution. Solving for a(x) > 0 consequently provides the eigenfunction
g = ea(x) and provides the expression for H 0(x, p) = V (y; x, p) + e−a(x)y L x,p

1 ea(x)y .
In general, for network with multiple fast variables, we can similarly solve the EVP if

we impose some conditions. To illustrate them on the above example consider the amounts
y1, y2 of fast variables E , E S as a process in two variables. Let a(x) = (a1(x), a2(x)),
g = ea(x)y

= ea1(x)y1+a2(x)y2 , and in e−a(x)y L x,p
1 ea(x)y we have a(x) appearing in the forms

{ea1(x), ea2(x), e0, e−a1(x), e−a2(x)
}. Consider the two coefficients in V (y; x, p) + e−a(x)y L x,p

1 ea(x)y

next to the terms y1 and y2 that are to be set equal to zero and thus determine a1(x), a2(x). When
a term e−a1(x) appears it must appear in the coefficient next to y1 (since E is a source species for
this reaction), and we require that, in that case, if a term ea2(x) also appears in the coefficient next
to y1, we must have y1 + y2 = const. This is in fact the case in our example of enzyme kinetics
(from E + S ⇀ E S), and it insures that we can isolate a quadratic equation to be solved for a1(x)
from the coefficient next to y1. We make the analogous requirement for coefficient next to y2 as
the term e−a2(x) appears in it (from E + S ↽ E S and E S ⇀ P + E), in order to allow us to
solve for a2(x). In isolating equations for a1(x) and a2(x), we could have also allowed for a term
e0 to appear in coefficient next to either y1 or y2, from reactions where a fast species produces a
slow one (for example, E ⇀ E + S).

We formalize the above requirements and make the following assumptions on the jump rates
in case the effective dynamics of the fast process is a pure Markov chain.
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Condition 4.5. Suppose that ζ̃ Y
k,i ∈ {−1, 0, 1} ∀k,∀i ; there are constants θk,0, {θk,i } ∈ {0, 1}

satisfying θk,0 +
∑

iθk,i = 1 such that

λk(x, y) = λk(x)(θk,0 +

∑
i

θk,i yi );

and for each species j for which ∃k, i such that θk,i = 1 and ζ̃ Y
k, j = −1 we have that either:

(i) a species j ′
̸= j for which ∃k ′ (possibly k) such that θk′,i = 1 and ζ̃ Y

k′, j ′ ̸= 0 is part of
a conservation law together with species j , that is, both θ̃ j > 0 and θ̃ j ′ > 0 where θ̃ = {θ̃i } is
such that effective net changes for the fast process satisfy

ζ̃ Y
k · θ̃ = 0, ∀k;

or:
(ii) a species j ′

̸= j for which ∃k ′ (possibly k) such that θk′,i = 1 and ζ̃ Y
k′, j ′ ̸= 0 is part of the

slow process.

This condition is simplest to explain in case the jump rates on the time scale of the fast
dynamics are given by mass-action functions, that is, a reaction k acting on fast species {Si }:

(slow species) +

∑
i

θk,i Si ⇀
∑

i

(θk,i + ζ̃ Y
k,i )Si + (slow species)

has jump rate of the form:

λk(z) = λk(x)
∏

i
yθk,i .

Linearity of the jump rates (in the fast variables) is implied by θk,i ∈ {0, 1},∀k, i . When a
reaction’s jump change for species i is ζ̃ Y

k,i = −1 then this is a reaction which is either simply
using up species i or converting species i into some other species j ̸= i :

(slow species) + Si ⇀ (slow species) + ζ̃ Y
k, j S j ,

with ζ̃ Y
k, j = 0 in the former and ζ̃ Y

k, j > 0 in the latter case. Since species i goes into this reaction,
it implies that also θk,i = 1. There may be other reactions k ′ with θk′,i = 1 which only use species
i as a catalyst and then ζ̃ Y

k′,i ≥ 0:

(slow species) + Si ⇀ (slow species) + ζ̃ Y
k′,i Si + ζ̃ Y

k′, j S j .

Our condition says that any species j ̸= i created by such a reaction from i must be either
in a conservation relation with it:

∑
i θ̃i Y N

i (t) =
∑

i θ̃i Y N
i (0) for all t > 0, or is a slow

species. For simplicity we assume that if species i is part of a conservation law θ̃ with θ̃i > 0
then there is a unique species i ′ such that θ̃i ′ > 0 as well, we denote this relationship by
i ′

∼ i . Let Mi = θ̃i Y N
i (t) + θ̃i ′Y N

i ′ (t),∀t ≥ 0, and in such pairs apply a change of variables
yi ′ = Mi/θ̃i ′ − (θ̃i/θ̃i ′ )yi .

We can now solve the eigenvalue problem when the fast process is purely a Markov chain.

Proposition 4.6. Assume the effective dynamics of the fast process is a Markov chain and
Condition 4.5 holds. Let I = {i : ∃k, j θk,i = 1, ζ̃ Y

k, j = −1}, I j = {i : ∃k θk,i = 1, ζ̃ Y
k, j = −1},

and J = { j : ∃k ζ̃ Y
k, j = −1}. Let {Ai j , Bi ,Ci j } be the functions given in (4.4)–(4.6). If

∀x ∈ E, p ∈ R: (a) for each j ∈ J the quadratic equation

z2
j

∑
i∈I j

Ai j (x, p) + z j

∑
i∈I j

Bi j (x, p) +

∑
i∈I j

Ci j (x, p) = 0
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has a unique positive solution z j ; and: (b) over the set Ic
= {i : ∄k, j θk,i = 1, ζ̃ Y

k, j = −1} the
system of linear equations{ ∑

j∈J c

z j Ai j (x, p) +

∑
j∈J c

Bi j (x, p) = 0
}

i∈Ic

has a unique positive solution of variables {z j } j∈J c over the set J c
= { j : ∄k ζ̃ Y

k, j = −1}. Then,
for any j ∈ J for which

∑
i∈I j

Ai j (x, p) ̸= 0 only (i) in Condition 4.5 is possible. Moreover, the
eigenvalue problem (3.11) has a unique solution given by

H0(x, p) =

∑
k:θk,0=1

λk (x)
(

1βk=1(eζ̃
X
k ·pe

∑
i ai (x )̃ζY

k,i − 1) + 1βk>1ζ̃
X
k · p

)
+

∑
i

1∃i ′∼i (Mi/θ̃i ′ )
∑

k:θk,i =1

λk (x)
(

1βk=1(eζ̃
X
k ·pe

∑
i ai (x )̃ζY

k,i − 1) + 1βk>1ζ̃
X
k · p

)
, (4.3)

where e
∑

i ai (x )̃ζY
k,i =

∏
i z
ζ̃Y

k,i
i in the formula is determined by the solutions to the quadratic and

linear equations above, and the associated eigenfunction is given by eh(x,y)
=

∏
i z

yi
i .

Proof. We rewrite (3.11) with h(x, y) =
∑

i ai (x)yi(
V (y; x, p) + e−h(x,y)L x,p

1 eh(x,y))
=

∑
k:βk=1

λk(z)(eζ̃
X
k ·p+

∑
i ai (x )̃ζY

k,i − 1) +

∑
k:βk>1

λk(z)̃ζ X
k · p

=

∑
k:βk=1

λk(x)(θk,0 +

∑
i

θk,i yi )(e
ζ̃ X

k ·p+
∑

i ai (x )̃ζY
k,i − 1) +

∑
k:βk>1

λk(x)(θk,0

+

∑
i

θk,i yi )̃ζ X
k · p

=

∑
k:θk,0=1

λk(x)
(

1βk=1(eζ̃
X
k ·p+

∑
i ai (x )̃ζY

k,i − 1) + 1βk>1ζ̃
X

k · p
)

+

∑
i∈Ic

yi

∑
k:θk,i =1

λk(x)
(

1βk=1(eζ̃
X
k ·p+

∑
i ai (x )̃ζY

k,i − 1) + 1βk>1ζ̃
X

k · p
)

+

∑
i∈I

yi

∑
k:θk,i =1

λk(x)
(

1βk=1(eζ̃
X
k ·p+

∑
i ai (x )̃ζY

k,i − 1) + 1βk>1ζ̃
X

k · p
)
.

In order to get a result which is independent of y we need to set all of the terms next to yi to
zero, which will leave the first row intact, except for adding to it all the Mi dependent terms from
the change of variables yi ′ = Mi/θ̃i ′ − (θ̃i/θ̃i ′ )yi where i ′

∼ i exists∑
i

1∃i ′∼i (Mi/θ̃i ′ )
∑

k:θk,i =1

λk(x)
(

1βk=1(eζ̃
X
k ·p+

∑
i ai (x )̃ζY

k,i − 1) + 1βk>1ζ̃
X

k · p
)
.

Using Condition 4.5 we can rewrite the middle row as∑
i∈Ic

yi

∑
j∈J c

(
ea j (x) Ai j (x, p) + Bi j (x, p)

)
,

and likewise the last row as∑
i∈I

yi

∑
j∈J

(
ea j (x) Ai j (x, p) + Bi j (x, p) + e−a j (x)Ci j (x, p)

)
.
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where we used the following functions

Ai j (x, p) =

∑
k:θk,i =1

1ζ̃Y
k, j =1λk(x)1βk=1eζ̃

X
k ·p

− 1i ′∼i (θ̃i/θ̃i ′ )

×

∑
k:θk,i ′=1

1ζ̃Y
k, j =1λk(x)1βk=1eζ̃

X
k ·p, (4.4)

Bi j (x, p) =

∑
k:θk,i =1

1ζ̃Y
k, j =0λk(x)1βk=1eζ̃

X
k ·p

− 1i ′∼i (θ̃i/θ̃i ′ )

×

∑
k:θk,i ′=1

1ζ̃Y
k, j =0λk(x)1βk=1eζ̃

X
k ·p (4.5)

+

∑
k:θk,i =1

λk(x)
(
−1βk=1 + 1βk>1ζ̃

X
k · p

)
− 1i ′∼i (θ̃i/θ̃i ′ )

×

∑
θk,i ′=1

λk(x)
(
−1βk=1 + 1βk>1ζ̃

X
k · p

)
,

Ci j (x, p) =

∑
k:θk,i =1

1ζ̃Y
k, j =−1λk(x)1βk=1eζ̃

X
k ·p

− 1i ′∼i (θ̃i/θ̃i ′ )

×

∑
k:θk,i ′=1

1ζ̃Y
k, j =−1λk(x)1βk=1eζ̃

X
k ·p. (4.6)

For each species i from the middle row we get one equation in a system of |Ic
| linear equations

in the variables z j = ea j (x) over the set j ∈ J c. For each i from the last row we get a single
quadratic equation in the variables z j = ea j (x), note that Condition 4.5 implies the map i ↦→ j
is unique. The set I j = {i : ∃k θk,i = 1, ζ̃k, j = −1} may not be of size 1, so these quadratic
equations will combine to identify a single solution z j to the quadratic equation∑

i∈I j

Ai j (x)ea j (x)
+

∑
i∈I j

Bi j (x) +

∑
i∈I j

Ci j (x)e−a j (x)
= 0.

Note that this equation can in fact have the coefficient
∑

i∈I j
Ai j = 0 in which case option (ii)

of the Condition 4.5 is possible. However, if the equation has
∑

i∈I j
Ai j ̸= 0 then the quadratic

equation has a unique positive solution iff
∑

i∈I j
Ai (x)

∑
i∈I j

Ci (x) < 0. This implies that only
option (i) of the Condition 4.5 is possible and species j ∈ J has to be in a conservation law with
some other species, as otherwise all of the functions Ai j (x, p),Ci j (x, p) are positive and only
Bi j (x, p) can be negative. □

Note that |I| ≥ |J | so |J c
| ≥ |Ic

| and in general there may be variables that are not defined
by the system (e.g. ∅ ⇀ S with no S ⇀ in system). This is the reason we include in out state
space Z only active species in the reaction network which are defined as species that appears as
an input in at least one reaction. An example of an inactive species is the product species P in
the enzymatic kinetics example, or the packaged virus particle species V in the viral production
example.

We next consider the case when the effective dynamics of the fast process is a piecewise-
deterministic Markov chain and a dynamical system (a PDMP). Recall that the state space of
a PDMP separates into a discrete and a continuous component, where the discrete component
jumps according to a Markov chain and the continuous component performs deterministic
dynamics. In the model of viral production (1.3), the fast variables are T and S, in amounts y1 and
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y2 respectively. Their effective dynamics are a birth–death Markov chain for y1, and deterministic
dynamics for y2 whose gradient depends on the state y1. Since y1 is discrete and y2 is continuous
from (3.9) we see that now a(x) appears in the function e−a(x)y L x,p

1 ea(x)y in the forms of eζ̃
y1
k a1(x)

and ζ̃ y2
k a2(x), that are effectively {ea1(x), e0, e−a1(x)

} and {a2(x), 0,−a2(x)} (see Section 5.4 for
evaluation of expressions). When a term e−a1(x) appears in the coefficient next to y1 (which it
does from T ⇀ ∅ and G + T + (S) ⇀ V ), it may happen that the term a2(x) also appears next
to y1 (as it does from T ⇀ T + S). Then, in order to be able to isolate an equation for a1(x)
from the coefficient next to y1, we require that a2(x) can be solved independently, which means
that in the coefficient next to y2 we only allow appearance of a2(x) (from S ⇀ ∅). In general,
we could have had two discrete fast variables in the network, in which case we would need to
impose the same requirements as we had in the pure Markov chain case. The only additional
requirement made in the PDMP case here comes from reactions where a discrete fast species
produces a continuous fast species (for example, T ⇀ T + S).

In case the fast process is a PDMP, sufficient conditions for the existence of an explicit
solution to the eigenvalue problem is slightly more difficult to state, but equally straightforward
to solve. No restrictions are necessary on its continuous component, and conditions on its discrete
component are similar to the case when the fast process is just a Markov chain. The only
difference is that, here we have an extra option (iii) in which species created from reactions
using fast discrete species are allowed to be fast continuous species (similarly to the option (ii)
where they are allowed to be slow species, see the explanation after Condition 4.5). We formalize
this as follows.

Condition 4.7. Suppose there are constants θk,0, {θk,i } ∈ {0, 1} satisfying θk,0 +
∑
θk,i = 1 such

that

λk(x, y) = λk(x)(θk,0 +

∑
i

θk,i yi );

for each i in the discrete component ζ̃ Y
k,i ∈ {−1, 0, 1} ∀k; and for each j in the discrete

component for which ∃k, i such that θk,i = 1 and ζ̃ Y
k, j = −1 we have that either (i) or (ii)

of Condition 4.5 hold or:
(iii) a species j ′

̸= j for which ∃k ′ (possibly k) such that θk′,i = 1 and ζ̃ Y
k′, j ′ ̸= 0 is in the

continuous component of the fast process, and is such that: ∃i∗
̸= i, ∃k∗

̸= k ′ such that θk∗,i∗ = 1
and ζ̃ Y

k∗, j ′ ̸= 0 and also ζ̃ Y
k∗, j∗ ̸= 0 only if j∗ is a slow species.

We note that if (i) holds for species i than the conserved species i ′
∼ i must also be in the

discrete component of the fast process.

Corollary 4.8. Assume the effective dynamics of the fast process is a piecewise-deterministic
Markov chain and Condition 4.7 holds. Let I, I j ,J be as in Proposition 4.6. If ∀x ∈ E, p ∈ R
for each discrete component species j ∈ Yd ∩ J the quadratic equation

z2
j

∑
i∈I j

A j j (x, p) + z j

∑
i∈I j

Bi j (x, p) +

∑
i∈I j

Ci j (x, p) = 0

has a unique positive solution z j , and over the set Ic the system of linear equations{ ∑
j∈Yd∩J c

z j Ai j (x, p) +

∑
j∈Yc

u j Ac
i j (x, p) +

∑
j∈(Yd∩J c)∪Yc

Bi j (x, p) = 0
}

i∈Ic
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has a unique positive solution of variables {z j } j∈Yd∩J c , {u j } j∈Yc , then for any j ∈ Yd ∩ J
for which

∑
i∈I j

Ai j (x, p) ̸= 0 only (i) in Condition 4.7 is possible. Moreover, the eigenvalue
problem (3.11) has a unique solution given by

H 0(x, p) =

∑
k:θk,0=1

λk(x)
(

1βk=1(eζ̃
X
k ·pe

∑
i ai (x )̃ζY

k,i − 1) + 1βk>1 (̃ζ X
k · p + ζ̃ Y

k · a(x))
)

+

∑
i

1∃i ′∼i (Mi/θ̃i ′ )

×

∑
k:θk,i =1

λk(x)
(

1βk=1(eζ̃
X
k ·pe

∑
i ai (x )̃ζY

k,i − 1) + 1βk>1 (̃ζ X
k · p + ζ̃ Y

k · a(x))
)
, (4.7)

where in the above formula the terms e
∑

i ai (x )̃ζY
k,i =

∏
i∈Yd

z
ζ̃Y

k, j
i and ζ̃ Y

k · a(x) =
∑

j∈Yc
ζ̃ Y

k, j u j (x)
are determined by the solutions to the stated quadratic and linear equations, and the associated
eigenfunction is given by eh(x,y)

=
∏

i∈Yd
zyi

i
∏

i∈Yc
eu j (x)y j .

Proof. The generator of the fast process has an additional term from the continuous component

L x,p
1 f (z) =

∑
k:βk=1

λk(z)( f (x, y + ζ̃ Y
k ) − f (x, y)) +

∑
k:βk>1

λk(z)̃ζ Y
k · ∇Y f (x, y),

so if a(x) = {ai (x)} using h(x, y) =
∑

i ai (x)yi as before Eq. (3.11) now becomes(
V (y; x, p) + e−h(x,y)L x,p

1 eh(x,y))
=

∑
k:θk,0=1

λk(x)
(

1βk=1(eζ̃
X
k ·p+

∑
i ai (x )̃ζY

k,i − 1) + 1βk>1 (̃ζ X
k · p + ζ̃ Y

k · a(x))
)

+

∑
i∈Ic

yi

∑
k:θk,i =1

λk(x)
(

1βk=1(eζ̃
X
k ·p+

∑
i ai (x )̃ζY

k,i − 1) + 1βk>1 (̃ζ X
k · p + ζ̃ Y

k · a(x))
)

+

∑
i∈I

yi

∑
k:θk,i =1

λk(x)
(

1βk=1(eζ̃
X
k ·p+

∑
i ai (x )̃ζY

k,i − 1) + 1βk>1 (̃ζ X
k · p + ζ̃ Y

k · a(x))
)
,

where we rewrite the middle row, using Yd and Yc to denote discrete and continuous components
respectively, as∑

i∈Ic

yi
( ∑

j∈Yd∩J c

ea j (x) Ai j (x, p) +

∑
j∈Yc

a j (x)Ac
i j (x, p) +

∑
j∈(Yd∩J c)∪Yc

Bi j (x, p)
)
,

and likewise the last row as∑
i∈I

yi

∑
j∈Yd∩J

(
ea j (x) A j j (x, p) + Bi j (x, p) + e−a j (x)Ci j (x, p)

)
,

where the functions Ai j (x), Bi (x),Ci (x) are the same as in (4.4),(4.5),(4.6), and the only new
contribution is from the function

Ac
i j (x, p) =

∑
k:θk,i =1

λk(x)1βk>1ζ̃
Y
k, j − 1i ′∼i (θ̃i/θ̃i ′ )

∑
k:θk,i ′=1

λk(x)1βk>1ζ̃
Y
k, j . (4.8)

Otherwise the rest of the process of solving for the result is the same. □

The condition precludes systems with reactions that are bi-molecular in fast species, which
is an assumption we made for the sake of simplicity of the proposition. It is in principle clear
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how one can try to extend the above derivation in case of multi-molecular reactions between fast
species to get a solution to the eigenvalue problem.

We will show how the procedure for solving the eigenvalue problem works in a variety of
examples, including the two mentioned in the Introduction.

5. Examples

We assume that reaction rates have mass-action form throughout the following examples, as
in (4.1) although in one of the examples (Section 5.2) we will in addition allow some of the
chemical reaction constants κi to be a function of a specific species of interest in the system. We
consider the LDP on EX = (0,∞) and EY is either [0, K ] for some K or (0,∞) depending on
existence of conservation laws in each example.

5.1. Enzymatic kinetics (MM)

We recall the model for enzyme kinetics (Michaelis–Menten), with an inflow of the substrate

(0) ∅
κ ′

0
⇀ S (1, 2) S + E

κ ′
1
⇌
κ ′

2

E S (3) E S
κ ′

3
⇀ P + E .

The scaling of the amounts is implied by the fact that molecular amount of the substrate S is an
order of magnitude greater than the amount of enzyme E and of the enzyme–substrate complex
E S. Let Z1, Z2, Z3, Z4 represent the amounts of S, E, E S, P molecular species respectively,
the orders of magnitude lead to appropriately scaled species amounts Z N

1 = Z1/N , Z N
2 =

Z2, Z N
3 = Z3, Z N

4 = Z4/N . The reaction constants κi also have different orders of magnitude,
with those for the dissolution of the enzyme–substrate complex in reactions (2, 3) being an order
of magnitude larger than the forming of the complex. Let κ0 = κ ′

0/N , κ1 = κ ′

1, κ2 = κ ′

2/N , κ3 =

κ ′

3/N , so the model of the system is

Z N
1 (t) = Z N

1 (0) + −N−1Y1(Nκ0t) − N−1Y1(N
∫ t

0
κ1 Z N

1 (s)Z N
2 (s)ds)

+N−1Y2(N
∫ t

0
κ2(M − Z N

2 (s))ds)

Z N
2 (t) = Z N

2 (0) − Y1(N
∫ t

0
κ1 Z N

1 (s)Z N
2 (s)ds) + Y2(N

∫ t

0
κ2(M − Z N

2 (s))ds)

+Y3(N
∫ t

0
κ3(M − Z N

2 (s))ds)

Z N
3 (t) = Z N

3 (0) + Y1(N
∫ t

0
κ1 Z N

1 (s)Z N
2 (s)ds)

−Y2(N
∫ t

0
κ2 Z N

3 (s)ds) − Y3(N
∫ t

0
κ3 Z N

3 (s)ds)

Z N
4 (t) = N−1Y3(N

∫ t

0
κ3 Z N

3 (s)ds).

There is a conservation law between E and E S since Z N
2 (t) + Z N

3 (t) ≡ M,∀t > 0 hence we
will use a change of variables z3 = M − z2. We also note that P is not an “active” species of the
system, as it does not enter on the left hand side of any reaction.
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This leaves a system with the slow and the fast process X N
= Z N

1 and Y N
= Z N

2 respectively.
The scaling conditions are clearly satisfied with the time-scale separation between slow X N and
Y N of order N . The effective dynamics of the slow process is given by the ODE in (1.2) while
the effective dynamics of the fast process is a birth–death Markov chain with death rate κ1z1z2

and birth rate (κ2 + κ3)(M − z2).
The rate of reaction (1) is binary, with λ1(z) = κ1z1z2, but since one of the factors, Z2, is part

of a conservation law and hence bounded by the constant M , by Proposition 4.4 the process has
an exponentially good approximation in a sequence of processes, indexed by increasing values
of M ′, in which the rate λ1 is replaced by λ′

1(z) = κ1z1(z2 ∧ M ′) ≡ λ1(z) for M ′
≥ M .

The generator for the pair is

AN f (x, y) = Nκ0( f (x + N−1, y) − f (x, y))

+ Nκ1xy( f (x − N−1, y − 1) − f (x, y))

+ Nκ2(M − y)( f (x + N−1, y + 1) − f (x, y))

+ Nκ3(M − y)( f (x, y + N−1) − f (x, y)),

(5.1)

so the exponential generator, acting on fN (x, y) = f (x) + N−1h(x, y), and its limit are

HN fN (x, y) = κ0(eN ( f (x+N−1)− f (x))+h(x+N−1,y)−h(x,y)
− 1)

+ κ1xy(eN ( f (x−N−1)− f (x))+h(x−N−1,y−1)−h(x,y)
− 1)

+ κ2(M − y)(eN ( f (x+N−1)− f (x))+h(x+N−1,y+1)−h(x,y)
− 1)

+ κ3(M − y)(eh(x,y+1)−h(x,y)
− 1),

lim
N→∞

HN fN (x, y) = κ0e f ′(x)
+ κ1xy(e− f ′(x)eh(x,y−1)−h(x,y)

− 1)

+ (κ2 + κ3)(M − y)(e f ′(x)eh(x,y+1)−h(x,y)
− 1)

= H 0(x, f ′(x)),

so that H 0(x, p) satisfies the EVP equation (3.11) with

V (y; x, p) = κ0ep
+ κ1xy(e−p

− 1) + κ2(M − y)(ep
− 1),

L x,p
1 eg(x,y)

= κ1xye−p(eg(x,y−1)
− eg(x,y)) + (κ2 + κ3)(M − y)(eg(x,y+1)

− eg(x,y)).

Since the perturbed effective fast dynamics is a birth–death Markov chain with birth rate
(κ2 + κ3)(M − y) and death rate κ1xye−p the density Condition 3.3 is satisfied, and there
is a unique stationary distribution which is a Binomial(M, π x,p) with size parameter M and
probability parameter π x,p

= (κ2 + κ3)/(κ2 + κ3 + κ1xe−p). Since the state space for Y x,p is
{0, 1, . . . ,M} both Lyapunov Conditions 3.4 are trivially satisfied.

In order to solve the EVP for H 0(x, p) above let g(x, y) = a(x)y, then

H 0(x, y) = κ1xy(e−pe−a(x)
− 1) + (κ2 + κ3)(M − y)(ea(x)

− 1)

= y
(
κ1x(e−pe−a(x)

− 1) − κ2(epea(x)
− 1) − κ3(ea(x)

− 1)
)

+M
(
κ2(epea(x)

− 1) + κ3(ea(x)
− 1)

)
+ κ0(ep

− 1),

which after setting the coefficient of y to zero gives a single quadratic equation

(κ2ep
+ κ3)e2a(x)

+ (κ1x − κ2 − κ3)ea(x)
− κ1xe−p

= 0.
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Since there was a conservation law in the fast variable the quadratic coefficients can satisfy
A(x)C(x) < 0 and produce a unique positive solution

ea(x)
=

−(κ1x − κ2 − κ3) +
√

(κ1x − κ2 − κ3)2 + 4(κ2ep + κ3)κ1xe−p

2(κ2ep + κ3)
,

which by Proposition 4.6 implies

H 0(x, p) =
M
2

(
−κ2 − κ3 − κ1x +

√
(κ2 + κ3 − κ1x)2 + 4(κ2 + κ3e−p)κ1x

)
+ κ0(ep

− 1).

From the explicit equation it is clear that on (0,∞) × R the function H 0(x, p) is convex and
coercive in p and it satisfies the condition (3.16).

5.2. Self-regulated gene expression (SRG)

Another common example from systems biology is that of self-regulated gene expression

(1, 2) G0
κ ′

1(P)
⇌
κ ′

2(P)
G1 (3, 4) G1

κ ′
3
⇀ G1 + R, R

κ ′
4
⇀ R + P (5, 6) R

κ ′
5
⇀ ∅, P

κ ′
6
⇀ ∅,

where G0,G1 are inactive and active molecular conformations of a gene, R is the MRNA,
and P is a protein expressed by this gene. The self-regulation of the gene comes via the protein
it expresses, whose amount affects the rate at which the active conformation becomes an inactive
conformation and vice versa.

We assume there is one copy of the gene, and the amount of MRNA and protein in the long run
is expressed in terms of a scaling parameter N . The two conformations of the gene are rapidly
changing their states, and the active one is rapidly involved in expression, so the rates κ ′

1, κ
′

2, κ
′

3
are assumed to be of order N , while the translation rate and the MRNA and protein degradation
rates κ ′

4, κ
′

5, κ
′

6 are of order 1. Let Z1, Z2, Z3, Z4 represent the amounts of G0,G1, R, P
respectively, so their rescaled versions are Z N

1 = Z1, Z N
2 = Z2, Z N

3 = Z3/N , Z N
4 = Z4/N .

Let κ1(Z3/N ) = κ ′

1(Z3)/N , κ2(Z3/N ) = κ ′

2(Z3)/N , κ3 = κ ′

3/N and κ4 = κ ′

4, κ5 = κ ′

5, κ6 = κ ′

6.
We assume the self-regulating rates κ1(·), κ2(·) are Lipschitz and grow at most linearly, and to
prevent absorption of the system we will assume they are positive.

There is a conservation law between G0 ad G1 since G0(t) + G1(t) ≡ 1,∀t so we use
z2 = 1 − z1. The model of the system is

Z N
1 (t) = Z N

1 (0) − Y1(
∫ t

0
Nκ1(Z N

4 (s))Z N
1 (t)ds) + Y2(

∫ t

0
Nκ2(Z N

4 (s))(1 − Z N
1 (s))ds)

Z N
3 (t) = N−1Y3(

∫ t

0
Nκ3(1 − Z N

1 (s))ds) − N−1Y5(
∫ t

0
Nκ5 Z N

3 (s)ds)

Z N
4 (t) = N−1Y4(

∫ t

0
Nκ4 Z N

3 (s)ds) − N−1Y6(
∫ t

0
Nκ6 Z N

4 (s)ds).

The slow and fast process are (X N
1 , X N

2 ) = (Z N
3 , Z N

4 ) and Y N
= Z N

1 respectively, with the
time-scale separation of order N , and the generator of the pair is

AN f (x, y)
= Nκ1(x2)y( f (x, y − 1) − f (x, y)) + Nκ2(x2)(1 − y)( f (x, y + 1) − f (x, y))
+ Nκ3(1 − y)( f (x1 + N−1, x2, y) − f (x, y)) + Nκ4x1( f (x1, x2 + N−1, y) − f (x, y))
+ Nκ5x1( f (x1 − N−1, x2, y) − f (x, y)) + Nκ6x2( f (x1, x2 − N−1, y) − f (x, y)).
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The effective dynamics of the fast process is a Markov chain on {0, 1} with 1 ↦→ 0 rate
κ1(x2)y and 0 ↦→ 1 rate κ2(x2)(1 − y) and a unique stationary distribution that is Bernoulli with
probability π x

= κ2(x2)/(κ2(x2) + κ1(x2)). This implies that the effective dynamics of the slow
process is given by the system of ODEs

ẋ1(t) =
κ3κ1(x2(t))

κ2(x2(t)) + κ1(x2(t))
− κ5x1(t)

ẋ2(t) = κ4x1(t) − κ6x2(t).

The exponential generator acting on fN (x, y) = f (x) + N−1g(x, y), and its limit are

HN fN (x, y) = κ1(x2)y(eg(x,y−1)−g(x,y)
− 1)

+ κ2(x2)(1 − y)(eg(x,y+1)−g(x,y)
− 1)

+ κ3(1 − y)(eN ( f (x1+N−1,x2)− f (x))+g(x1+N−1,x2,y)−g(x,y)
− 1)

+ κ4x1(eN ( f (x1,x2+N−1)− f (x))+g(x1,x2+N−1,y)−g(x,y)
− 1)

+ κ5x1(eN ( f (x1−N−1,x2)− f (x))+g(x1−N−1,x2,y)−g(x,y)
− 1)

+ κ6x2(eN ( f (x1,x2−N−1)− f (x))+g(x1,x2−N−1,y)−g(x,y)
− 1),

lim
N→∞

HN fN (x, y) = κ1(x)y(eg(x,y−1)−g(x,y)
− 1) + κ2(x)(1 − y)(eg(x,y+1)−g(x,y)

− 1)

+ κ3(1 − y)(e∂x1 f (x)
− 1) + κ4x1(e∂x2 f (x)

− 1)
+ κ5x1(e−∂x1 f (x)

− 1) + κ6x2(e−∂x2 f (x)
− 1)

and we can identify V and L x,p
1 as

V (y; x, p) = κ3(1 − y)(ep1 − 1) + κ4x1(ep2 − 1) + κ5x1(e−p1 − 1) + κ6x2(e−p2 − 1),
L x,p

1 eg(x,y)
= κ1(x2)y(eg(x,y−1)

− eg(x,y)) + κ2(x2)(1 − y)(eg(x,y+1)
− eg(x,y)).

Since the perturbed effective fast dynamics is a simple {0, 1} Markov chain with positive
transition rates (same as in the unperturbed case) the density Condition 3.3 is satisfied, and both
Lyapunov Conditions 3.4 and 3.5 are trivially satisfied.

Letting g(x, y) = a(x)y, implies

H 0(x, p) = κ1(x2)y(e−a(x)
− 1) + κ2(x2)(1 − y)(ea(x)

− 1) + κ3(1 − y)(ep1 − 1)
+ κ4x1(ep2 − 1) + κ5x1(e−p1 − 1) + κ6x2(e−p2 − 1)
= y

(
κ1(x2)(e−a(x)

− 1) − κ2(x2)(ea(x)
− 1) − κ3(ep1 − 1)

)
+ κ2(x2)(ea(x)

− 1) + κ3(ep
− 1) + κ4x1(ep2 − 1) + κ5x1(e−p1 − 1)

+ κ6x2(e−p2 − 1),

which after setting the coefficient of y to 0 gives the quadratic equation

− κ2(x2)e2a(x)
+ (κ2(x2) − κ1(x2) − κ3(ep1 − 1))ea(x)

+ κ1(x2) = 0,

with A(x)C(x) < 0 and one positive solution (regardless of the functions κ1(·), κ2(·) or the values
of reaction coefficients κi , i = 3, 4, 5, 6)

ea(x)
=
κ2(x2) − κ1(x2) − κ3(ep1 − 1) +

√
(κ2(x2) − κ1(x2) − κ3(ep1 − 1))2 + 4κ2(x2)κ1(x2)

2κ2(x2)
.

By Proposition 4.6

H 0(x, p) = −κ2(x2) − κ1(x2) +

√
(κ2(x2) − κ1(x2) − κ3(ep1 − 1))2 + 4κ2(x2)κ1(x2)

+ κ4x1(ep2 − 1) + κ5x1(e−p1 − 1) + κ6x2(e−p2 − 1).
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Since the rates κ1(x), κ2(x) are assumed Lipschitz in x , with at most linear growth, H 0(x, p) is
convex and coercive in p and satisfies the condition (3.16) in (0,∞) × R for arbitrary ϵ > 0.
In [25] authors obtain the same large deviation principle for this example (note that the slow and
fast variables are labelled differently there).

5.3. Down-regulation (DR)

We consider a simple model of a negative self-regulation mechanism

(0) ∅
κ ′

0
⇀ A (1) A + B

κ ′
1
⇀ ∅ (2) A

κ ′
2
⇀ A + B (3) B

κ ′
3
⇌
κ ′

4

∅,

where A is a species of interest and B is a species used to down-regulate it, namely, A controls
its own molecular amount by producing more of the regulating species B. Suppose the molecular
amounts and rates satisfy

|A| = O(N ) ↦→ X N
= |A|/N , |B| = O(1), κ ′

1, κ
′

2 ∼ O(1), κ ′

0, κ
′

3, κ
′

4 ∼ O(N ).

Let Z1, Z2 represent the amounts of A and B molecules respectively, so that the rescaled versions
are Z N

1 = Z1/N , Z N
2 = Z2. Let κ ′

1 = κ1, κ
′

2 = κ2 and κ3 = κ ′

3 N , κ4 = κ ′

4 N . The model for the
system is

Z N
1 (t) = Z N

1 (0) + N−1Y0(κ0t) − N−1Y1(
∫ t

0
Nκ1 Z N

1 (s)Z N
2 (s)ds)

Z N
2 (t) = Z N

2 (0) − Y1(
∫ t

0
Nκ1 Z N

1 (s)Z N
2 (s)ds) + Y2(

∫ t

0
Nκ2 Z N

1 (s)ds)

−Y3(
∫ t

0
Nκ3 Z N

2 (s)ds) + Y4(
∫ t

0
Nκ4ds).

The slow and the fast process are X N
= Z N

1 and Y N
= Z N

2 respectively, and the generator of the
pair is

AN f (x, y) = Nκ0( f (x + N−1, y) − f (x, y)) + Nκ1 yx( f (x − N−1, y − 1) − f (x, y))

+ Nκ2x( f (x, y + 1) − f (x, y)) + Nκ3 y( f (x, y − 1) − f (x, y))

+ Nκ4( f (x, y + 1) − f (x, y)).

The effective dynamics of the fast process is a simple birth and death Markov chain on Z+

with birth rate κ2x + κ4 and death rate κ1xy + κ3 y with a unique stationary distribution that is
Poisson(µx ) with parameter µx

= (κ2x + κ4)/(κ1x + κ3). The effective dynamics of the slow
process x is a solution to the ODE

ẋ(t) = κ0 − κ1x(t)
κ2x(t) + κ4

κ1x(t) + κ3
.

The rate of reaction (1) is binary, λ1 = κ1xy, but one of the factors, x , is the variable for the
slow process which has constant rate of increase. Hence, by Proposition 4.4, this model has an
exponentially good approximation in a sequence of processes, indexed by increasing values of
M ′, where only the rate of reaction (1) is replaced by λ′

1(z) = κ1 y(x ∧ M ′).
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The exponential generator for fN (x, y) = f (x) + N−1g(x, y) is

HN fN (x, y) = κ0(eN ( f (x+N−1)− f (x))
− 1)

+ κ1xy(eN ( f (x−N−1)− f (x))+g(x−N−1,y−1)−g(x,y)
− 1)

+ κ2x(eg(x,y+1)−g(x,y)
− 1)

+ κ3 y(eg(x,y−1)−g(x,y)
− 1)

+ κ4(eg(x,y+1)−g(x,y)
− 1),

so that its limit H 0(x, p) solves the eigenvalue problem (3.11) with

V (y; x, p) = κ0(ep
− 1) + κ1xy(e−p

− 1),

L x,p
1 eg(x,y)

= κ1xye−p(eg(x,y−1)
− eg) + κ2x(eg(x,y+1)

− eg) + κ3 y(eg(x,y−1)
− eg)

+ κ4(eg(x,y+1)
− eg).

Letting g(x, y) = a(x)y we get

H 0(x, p) = κ0(ep
− 1) + κ1xy(e−p−a(x)

− 1) + κ2x(ea(x)
− 1) + κ3 y(e−a(x)

− 1)

+ κ4(ea(x)
− 1)

= y
(
κ1x(e−p−a(x)

− 1) + κ0(ep
− 1) + κ3(e−a(x)

− 1)
)
+ κ2x(ea(x)

− 1)

+ κ4(ea(x)
− 1).

In order to solve the EVP we set the coefficient of y to 0 which gives the equation

ea(x)
=
κ1xe−p

+ κ3

κ1x + κ3
> 0,∀x ≥ 0,∀p,

and hence

H 0(x, p) = κ0(ep
− 1) +

(κ2x + κ4)(κ1xe−p
+ κ3)

κ1x + κ3
,

which is convex and coercive in p and satisfies (3.16) in (0,∞) × R. The effect of the needed
truncation will be the replacement of κ1x by κ1(x ∧ M ′) in the above formula for H 0.

To satisfy Condition 3.5 we note that |V (y; x, p)| → ∞ as y → ∞. For any c > 1 we let
ϕx,p = ax,p y, with ax,p to be chosen. Then calculating as above

e−ϕx,p(y)L x,p
1 eϕx,p(y)

+ c|V (y; x, p)|

= κ1xye−p(e−ax,p − 1) + κ2x(eax,p − 1) + κ3 y(e−ax,p − 1) + κ4(eax,p − 1)

+ cκ1xy|e−p
− 1|

= y
(
(κ1xe−p

+ κ3)(e−ax,p − 1) + cκ1x |e−p
− 1|

)
+ (κ2x + κ4)(eax,p − 1),

and choosing ax,p which sets the coefficient of y to 0

eax,p =
κ1xe−p

+ κ3

κ1xe−p + κ3 − cκ1x |e−p − 1|
≥ 1

implies ϕx,p = ax,p y → ∞ as y → ∞ and

e−ϕx,p(y)L x,p
1 eϕx,p(y)

+ c|V (y; x, p)| = (κ2x + κ4)(eax,p − 1), ∀y ∈ EY ,

with the right hand side d = (κ2x + κ4)(eax,p − 1) ∈ [0,∞) being independent of y, as needed
for (3.13).
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5.4. Viral production (VP)

A somewhat more complicated model is one for production of packaged virus particles

(1) stuff
κ ′

1
⇀ G (2) G

κ ′
2
⇀ T

(3) T
κ ′

3
⇀ T + S (4) T

κ ′
4
⇀ ∅

(5) S
κ ′

5
⇀ ∅ (6) G + T + (S)

κ ′
6
⇀ V ,

where T is the viral template, G the viral genome, S the viral structural protein and V the
packaged virus. The virus has very few templates from which it manages to co-opt the cell’s
MRNA to make a relatively large copy number of its genomes, and an order of magnitude
larger number of viral structural proteins. Letting Z1, Z2, Z3, Z4 denote the amounts of species
T,G, S, V respectively, the appropriate rescaling gives Z N

1 = Z1, Z N
2 = Z2/N 2/3, Z N

3 =

Z3/N , Z N
4 = Z4/N 2/3. The chemical rates also have a range of orders of magnitude, relative

to species rescaling they are best expressed by κ1 = κ ′

1, κ2 = κ ′

2 N 2/3, κ3 = κ ′

3/N , κ4 = κ ′

4, κ5 =

κ ′

5, κ6 = κ ′

6 N 5/3. The only reaction that is not in standard mass-action form is (6) where the
effect of viral proteins is felt only in terms of their order of magnitude, and the usual dependence
on the amounts is binary in the amounts of viral templates and genomes λ6(z) = κ6z2z1. The
model for this system is

Z N
1 (t) = Z N

1 (0) + Y2(
∫ t

0
N 2/3κ2 Z N

2 (s)ds) − Y4(
∫ t

0
N 2/3κ4 Z N

1 (s)ds)

− Y6(
∫ t

0
N 2/3κ6 Z N

1 (s)Z N
2 (s)ds)

Z N
2 (t) = Z N

2 (0) + N−2/3Y1(
∫ t

0
N 2/3κ1ds) − N−2/3Y2(

∫ t

0
N 2/3κ2 Z N

2 (s)ds)

− N−2/3Y6(
∫ t

0
N 2/3κ6 Z N

1 (s)Z N
2 (s)ds)

Z N
3 (t) = Z N

3 (0) + N−1Y3(
∫ t

0
N 5/3κ3 Z N

1 (s)ds) − N−1Y5(
∫ t

0
N 5/3κ5 Z N

3 (s)ds)

− N−1Y6(
∫ t

0
N 2/3κ6 Z N

1 (s)Z N
2 (s)ds)

Z N
4 (t) = Z N (0) + N−2/3Y6(

∫ t

0
N 2/3κ6 Z N

1 (s)Z N
2 (s)ds).

The packaged virus V is the final product but not an “active” species in the system, and can be
tracked from knowledge on the behaviour of Z N

2 . The slow and fast processes are respectively
X N

= Z N
2 and Y N

= (Z N
1 , Z N

3 ) and the time-scale separation is now N 2/3 which will also give
the scaling for the large deviation asymptotics as N 2/3, rather than N .

This is a modified version of the viral production model considered in [4], where we showed
that the effective dynamics of the fast process Y N is a piecewise deterministic Markov process
with discrete component Y N

1 and continuous component Y N
2 . The discrete component is a birth–

death Markov chain with birth rate κ2x and death rate κ4 y1 + κ6xy1. The continuous component
follows the ODE ẏ2(t) = κ3 y1 − κ5 y2 which depends on the value y1 of the discrete component
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Y N
1 . This process has a unique stationary distribution µx (y1, y2) which satisfies∫ [

κ2x (g(y1 + 1, y2) − g(y1, y2))+ (κ4 y1 + κ6xy1) (g(y1 − 1, y2) − g(y1, y2))

+ (κ3 y1 − κ5 y2)∂y2 g(y1, y2)
]
µx (y1, y2) = 0.

In particular for the discrete component µx has a Poisson(mx ) distribution with parameter
mx

= κ2x/(κ4 + κ6x) so Eµx [Y1] = Vµx [Y1] = mx . Moreover, the mean and variance of
the continuous component satisfy Eµx [Y2] = (κ3/κ5)mx . Using the above results and averaging
techniques it can be shown (in the same way as in [4]) that the effective dynamics of the slow
process is given by the ODE

ẋ(t) = κ1 − κ2x(t)dt − κ6
κ3

κ5

κ2x(t)
κ4 + κ6x(t)

x(t)dt.

The rate of reaction (6) is binary, λ6 = κ6xy1, but one of the factors is the variable for the slow
process which has a constant rate of increase. By Proposition 4.4, this model has an exponentially
good approximation in a sequence of processes, indexed by increasing values of M ′, where only
the rate of reaction (6) is replaced by λ′

6(z) = κ6 y2(x ∧ M ′). The effect of the needed truncation
will be the replacement of κ6x by κ6(x ∧ M ′) in the final formula for H 0.

The generator for the triple is

AN f (x, y1, y2) =

Nκ1

(
f (x + N−2/3, y1, y2) − f (x, y1, y2)

)
+ N 2/3κ2x

(
f (x − N 2/3, y1 + 1, y2) − f (x, y1, y2)

)
+ N 5/3κ3 y1

(
f (x, y1, y2 + N−1) − f (x, y1, y2)

)
+ N 2/3κ4 y1 ( f (x, y1 − 1, y2) − f (x, y1, y2))

+ N 5/3κ5 y2

(
f (x, y1, y2 − N−1) − f (x, y1, y2)

)
+ N 2/3κ6xy1

(
f (x − N 2/3, y1 − 1, y2) − f (x, y1, y2)

)
,

(5.2)

so the exponential generator, on functions of the form fN (x, y) = f (x) + N−2/3g(x, y1, y2) is

HN fN (x, y1, y2) =

κ1
(
eN2/3( f (x+N−2/3)− f (x))+g(x+N−2/3,y1,y2)−g(x,y1,y2)

− 1
)

+ κ2x
(
eN 2/3( f (x−N 2/3)− f (x))+g(x−N−2/3,y1+1,y2)−g(x,y1,y2)

− 1
)

+ κ3 y1
(
eg(x,y1,y2+N−1)−g(x,y1,y2)

− 1
)
+ κ4 y1

(
eg(x,y1−1,y2)−g(x,y1,y2)

− 1
)

+ κ5 y2
(
eg(x,y1,y2−N−1)−g(x,y1,y2)

− 1
)

+ κ6xy1
(
eN2/3( f (x−N2/3)− f (x))+g(x,y1−1,y2)−g(x,y1,y2)

− 1
)
,

and its limit is

lim
N→∞

HN fN (x, y1, y2)

= κ1
(
e f ′(x)

− 1
)
+ κ2x

(
e− f ′(x)+g(x,y1+1,y2)−g(x,y1,y2)

− 1
)
+ κ3 y1∂y2 g(x, y1, y2)

+ κ4 y1
(
eg(x,y1−1,y2)−g(x,y1,y2)

− 1
)
− κ5 y2∂y2 g(x, y1, y2)

+ κ6xy1
(
e− f ′(x)+g(x,y1−1,y2)−g(x,y1,y2)

− 1
)
.

We can identify the potential function V as

V (y1, y2; x, p) = κ1(ep
− 1) + κ2x(e−p

− 1) + κ6xy1(e−p
− 1),
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and perturbed generator L x,p
1 for effective fast process as

L x,p
1 eg(x,y1,y2)

= κ2xe−p(eg(x,y1+1,y2)
− eg(x,y1,y2)) + κ4 y1(eg(x,y1−1,y2)

− eg(x,y1,y2))
+ (κ3 y1 − κ5 y2)∂y2eg(x,y1,y2)

+ κ6xy1e−p(eg(x,y1−1,y2)
− eg(x,y1,y2)).

To solve the eigenvalue problem (3.11) with this V and L x,p
1 , we let g(x, y) = a1(x)y1 + a2(x)y2

which would imply

H 0(x, p) = κ1(ep
− 1) + κ2x(e−p

− 1) + κ6xy1(e−p
− 1)

+ κ2xe−p(ea1(x)
− 1) + κ4 y1(e−a1(x)

− 1) + (κ3 y1 − κ5 y2)a2(x)
+ κ6xy1e−p(e−a1(x)

− 1).

In the reactions which have linear rates in y1, reactions (4) and (6) have ζ̃ Y
4,1 = −1 in the discrete

variable y1, while reaction (3) changes only the continuous variable y2. Hence we get an equation
which is potentially quadratic in ea1(x), and involves a2(x) as well. However, Condition 4.7 is
satisfied since there exist only reaction (5) which has linear rate in y2 and it only changes y2.
Thus the equation for a2(x) can be solved independently of ea1(x), and the one equation for ea1(x)

potentially quadratic in fact has the quadratic coefficient equal to 0. Setting coefficients of y1 and
y2 to zero we get

a2(x) = 0, e−a1(x)
=
κ4 + κ6x − κ3a2(x)
κ4 + κ6xe−p

> 0 ∀x ≥ 0,∀p

H 0(x, p) = κ1(ep
− 1) + κ2x(e−p

− 1)(1 +
κ6xe−p

κ4 + κ6x
),

which is convex and coercive in p and satisfies (3.16) in (0,∞) × R. Recall that one needs to
replace κ6x by κ6(x ∧ M ′) in the above formula for H 0.

Since the state space for the fast variables in not compact we need to check the Lyapunov
Condition 3.5. Note that |V (y1, y2; x, p)| → ∞ as |(y1, y2)| → ∞. Let y∗

1 be large enough so
that (κ6xy∗

1 +κ2x)|e−p
−1| > κ1(ep

−1). For any c > 1 we let ϕx,p = ax,p y1, then ∀y1 > y∗

1 ,∀y2

e−ϕx,p(y)L x,p
1 eϕx,p(y)

+ c|V (y; x, p)|
= κ2xe−p(eax,p − 1) + κ4 y1(e−ax,p − 1) + κ6xy1e−p(eax,p − 1)

+ c((κ6xy∗

1 + κ2x)|e−p
− 1| − κ1(ep

− 1)),

and choosing ax,p to set the coefficients of y1 to 0

e−ax,p =
κ4 + κ6x − cκ6x |e−p

− 1|

κ4 + κ6x
< 1

implies ϕx,p = ay1 → ∞ as |y1| → ∞, and

e−ϕx,p(y)L x,p
1 eϕx,p(y)

+ c|V (y; x, p)| = κ2xe−p(eax,p − 1) + cκ2x |e−p
− 1| − cκ1(ep

− 1),

the right-hand side being independent of (y1, y2) as needed for (3.13).
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Appendix

We adapt the proof of the large deviation principle for the two time-scale jump–diffusions
given in [23] to the context of our multiscale Markov chain Z N . Since the steps of the proof are
the same, we give a fairly terse outline and explain carefully the details only where the proof is
modified.
A.1. Proof of the LDP Theorem 3.6

Proof. Our proof is based on the viscosity solution to the Cauchy problem for each h ∈ Cb(E)

∂t uN = HN uN , in (0, T ] × E; uN (0, ·) = h(·) in E, (A.1)

where the non-linear operator is the exponential generator HN f =
1
N e−N f AN eN f for eN f

∈

D(AN ) given by

HN f (z) =
1
N

∑
k

NβkλN
k (z)(eN ( f (z+N−αζ N

k )− f (z))
− 1).

The definition of viscosity solutions for these types of non-local partial integro-differential
equations (PIDEs) and their properties were given in [24], and various results can be found
in [6]. In order to establish the convergence of uN we need to use a family of integro-differential
operators and a sequence of viscosity sub- and super-solutions to associated Cauchy problems.

For θ ∈ (0, 1), ξ ∈ C1
c (EY ), using ϕ satisfying (3.12) of the Lyapunov Condition 3.4 we

define two sequences (over N ) of functions:

f0,N (x, y) = f0(x) +
1
N

g0(y),

g0(y) = (1 − θ )ξ (y) + θϕ(y), f0(x) = φ(x) + γ log(1 + x2);

for some γ > 0 and φ ∈ C1
c (EX ), and

f1,N (x, y) = f1(x) +
1
N

g1(y)

g1(y) = (1 + θ )ξ (y) − θϕ(y), f1(x) = φ(x) − γ log(1 + x2)

Then,

HN f0,N (x, y)

=

∑
k:βk=1

λN
k (z)

(
eN ( f0(x+N−αζ N

k )− f0(x))+(g0(y+N−αζ N
k )−g0(y))

− 1
)

+

∑
k:βk>1

Nβk−1λN
k (z)

(
eN ( f0(x+N−αζ N

k )− f0(x))+(g0(y+N−αζ N
k )−g0(y))

− N N−αζ N
k · ∇ f0(x) − N−αζ N

k · ∇g0(y) − 1
)

+

∑
k:βk>1

NβkλN
k (z)N−αζk · ∇ f0(x) +

∑
k:βk>1

Nβk−1λN
k (z)N−αζk · ∇g0(y)

=

∑
k:βk=1

λN
k (z)

(
eζ̃

X
k ·∇ f0 − 1

)
+

∑
k:βk=1

λN
k (z)eζ̃

X
k ·∇ f0

(
eg0(y+ζ̃Y

k )−g0(y)
− 1

)
+

∑
k:βk>1

λN
k (z)̃ζ X

k · ∇ f0 +

∑
k:βk>1

λN
k (z)̃ζ Y

k · ∇g0(y) + N−1εN (x, y)
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= V (y; x,∇ f0) +

∑
k:βk=1

λN
k (z)eζ̃

X
k ·∇ f0

(
eg0(y+ζ̃Y

k )−g0(y)
− 1

)
+

∑
k:βk>1

λN
k (z)̃ζ Y

k · ∇g0(y)

+ N−1εN (x, y),

with |εN | bounded on compact subsets of EX × EY (note supx |∇ f0(x)| < ∞).
Letting p = ∇ f0 we have (by convexity of e)

HN f0,N (x, y)

≤ V (y; x, p) +

∑
k:βk=1

λN
k (z)eζ̃

X
k ·p((1 − θ )(eξ (y+ζ̃Y

k )−ξ (y)
− 1) + θ (eϕ(y+ζ̃Y

k )−ϕ(y)
− 1)

)
+

∑
k:βk>1

λN
k (z)̃ζ Y

k ·
(
(1 − θ )∇ξ (y) + θ∇ϕ(y)

)
+ N−1εN (x, y)

= V (y; x, p) + (1 − θ )e−ξ L x,p
1 eξ (y) + θe−ϕL x,p

1 eϕ(y) + N−1εN (x, y),

so

lim sup
N→∞

HN f0,N (x, y) ≤ V (y; x, p) + (1 − θ )e−ξ L x,p
1 eξ (y) + θe−ϕL x,p

1 eϕ(y).

Similarly

HN f1,N (x, y)

= V (y; x,∇ f1) +

∑
k:βk=1

λN
k (z)eζ̃

X
k ·∇ f1

(
eg1(y+ζ̃Y

k )−g1(y)
− 1

)
+

∑
k:βk>1

λN
k (z)̃ζ Y

k · ∇g1(y) + N−1εN (x, y)

≥ V (y; x, p) + (1 + θ )e−ξ L x,p
1 eξ (y) − θe−ϕL x,p

1 eϕ(y) + N−1εN (x, y),

where now p = ∇ f1 (and we used inequalities ex
− 1 ≥ x ≥ 1 − e−x ). So

lim inf
N→∞

HN f1,N (x, y) ≥ V (y; x, p) + (1 + θ )e−ξ L x,p
1 eξ (y) − θe−ϕL x,p

1 eϕ(y).

This implies that for any {xN , yN } contained in a compact subset of EX × EY with xN → x

lim sup
N→∞

HN f0,N (xN , yN ) ≤ H0(x, p; ξ, θ)

and

lim inf
N→∞

HN f1,N (xN , yN ) ≥ H1(x, p; ξ, θ),

where the Lyapunov Condition 3.4 allows us to define two families (over θ ∈ (0, 1), ξ ∈ C1
c (EY ))

of operators

H0(x, p; ξ, θ) := sup
y∈EY

{V (y; x, p) + (1 − θ )e−ξ L x,p
1 eξ (y) + θe−ϕL x,p

1 eϕ(y)},

H1(x, p; ξ, θ) := inf
y∈EY

{V (y; x, p) + (1 + θ )e−ξ L x,p
1 eξ (y) − θe−ϕL x,p

1 eϕ(y)}.

It is easily seen (again using Condition 3.4 and the fact that ξ ∈ C1
c (EY )) that for c > 0

{HN ,0 f0,N ≥ −c} ∩ { f0,N ≤ c} and {HN ,0 f1,N ≤ c} ∩ { f1,N ≥ −c} are contained in compact
subsets of EX ×EY and by construction { f0,N } and { f1,N } converge uniformly on compact subsets
of EX × EY to f0 and f1 respectively.
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This technique of constructing upper and lower limits for H N was developed in [17] for
stochastic models with multiple time scales, see Chapter 11 for example of its use in the context
of random evolutions.

The defined sequence of functions thus verifies conditions needed to establish the following
result (Conditions 3.1 and 3.2 for Lemma 6 in [23]): suppose for a sequence of uniformly
bounded (over N ) viscosity solutions uh

N of the Cauchy problem (A.1) we construct the upper
semicontinuous regularization uh of the function

uh
↑

:= sup
yN

{lim sup
N→∞

uh
N (tN , xN , yN ) : (tN , xN ) → (t, x)}

and, similarly, we construct the lower semicontinuous regularization uh of the function

uh
↓

:= inf
yN

{lim inf
N→∞

uh
N (tN , xN , yN ) : (tN , xN ) → (t, x)};

then (see Lemma 6 in [23] for details of this conclusion) uh is a sub-solution of ∂t u ≤ H0(x,∇u)
and uh is a super-solution of ∂t u ≥ H1(x,∇u) with the same initial conditions u(0, ·) = h,
where the two non-linear operators above are defined from the two earlier constructed families
of operators by

H0(x, p) := inf
ξ,θ

H0(x, p; ξ, θ), H1(x, p) := sup
ξ,θ

H1(x, p; ξ, θ).

By definition of uh
↑

and uh
↓

we immediately have uh
≥ uh , so if we establish the reverse

inequality, we will have proved (Lemma 7 [23]) uniform convergence (over compact subsets of
[0, T ] × EX × EY ) of uN to u0 the viscosity solution to the Cauchy problem

∂t u0 = H 0u0, in (0, T ] × E; u0(0, ·) = h(·), in E . (A.2)

To establish uh
≤ uh we need to verify that the comparison principle holds between sub-

solutions of ∂t uh
≤ H0(x,∇uh) and super-solutions of ∂t uh

≥ H1(x,∇uh), which will follow if
we establish the operator inequality

H0(x, p) ≤ H 0(x, p) ≤ H1(x, p), (A.3)

where H 0(x, p) is defined as the solution to the eigenvalue problem

(V (y; x, p) + L x,p
1 )eh(x,y)

= H 0(x, p)eh(x,y). (A.4)

To prove the left-hand side we can use the Donsker–Vardhan (see [13]) variational represen-
tation of the principal eigenvalue H 0(x, p) in (A.4) which is given by

H 0(x, p) = sup
µ∈P(EY )

(∫
EY

V (y; x, p)dµ(y) + inf
g∈D++(Lx,p

1 )

∫
EY

L x,p
1 g
g

(y)dµ(y)
)

(A.5)

(with D++(L x,p
1 ) ⊂ Cb(EY ) denoting functions strictly bounded below by a positive constant).

We then repeat the same argument given in Lemma 11.35 of [17] that proves

H0(x, p) = inf
ξ,θ

sup
µ∈P(EY )

∫
EY

(
V (y; x, p) + (1 − θ )e−ξ Lx,p

1 eξ (y) + θe−ϕLx,p
1 eϕ(y)

)
dµ(y)

≤ sup
µ∈P(EY )

(∫
EY

V (y; x, p)dµ(y) + inf
g∈D++(Lx,p

1 )

∫
EY

Lx,p
1 g

g
(y)dµ(y)

)
= H0(x, p)

(note that in [17] operators we denoted as H0(x, p), H1(x, p) are indexed by H1(x, p), H2(x, p),
respectively). The only difference is that we use the density Condition 3.3 and the Lyapunov



Please cite this article in press as: L. Popovic, Large deviations of Markov chains with multiple time-scales, Stochastic Processes and their
Applications (2018), https://doi.org/10.1016/j.spa.2018.09.009.

36 L. Popovic / Stochastic Processes and their Applications ( ) –

Condition 3.4 on ϕ to replace their analogous Condition 11.21, and to insure the finiteness of the
sum of integrals in the above expression.

To prove the right-hand side we first use Lemma B.10 of [17] which proves the inequality

H1(x, p) = sup
ξ,θ

inf
y∈EY

{V (y; x, p) + (1 + θ )e−ξ L x,p
1 eξ (y) − θe−ϕL x,p

1 eϕ(y)}

≥ inf
µ∈P(EY )

lim inf
t→∞

1
t

log Eµ
[
e
∫ t

0 V (Y (s);x,p)ds].
We next use Lemma 8 of [23] which uses the density Condition 3.3 (and the fact that
infy V (y; x, p) > −∞) to insure a uniform (over initial points Y (0)) large deviation principle
lower bound for the occupation measure of the effective dynamics of the fast process (Y (s); x, p)
(given by the generator L x,p

1 ) to prove that for any initial µ ∈ P(EY ) for (Y (s); x, p) we have
the inequality

lim inf
t→∞

1
t

log Eµ
[
e
∫ t

0 V (Y (s);x,p)ds]
≥ H 0(x, p),

with H 0(x, p) given by the variational form (A.5) above.
Having proved the Operator Inequality (A.3) the constructed sub- and super-solutions

sandwich the sequence of viscosity solutions uh
N , establishing their convergence to the viscosity

solution uh
0 , which is by assumption on the limiting Cauchy problem unique. The next step is

to prove exponential tightness of the sequence {X N (t)}. Exponential tightness of paths of {X N }

follows from the convergence of the exponential generators HN by a standard argument (see
Lemma 2 in [23], or equivalently see Corollary 4.17 and a simple calculation from Lemma 4.22
in [17]). Finally, by Bryc formula (Theorem 2.2) we have established a large deviation principle
for {X N (t)} with speed 1/N and good rate function I given by uh

0(t) in terms of a variational
principle (3.15). □

We now use the solution to the eigenvalue problem (3.11) to simplify the proof of the
above theorem by using the associated eigenfunction in forming the family of operators in the
definitions of H0 and H1. We also replace the Lyapunov Condition 3.4 by the less stringent
Condition 3.5 (sufficient for proving multiplicative ergodicity of Markov processes, [22] of single
scale processes). Since for many chemical reaction models one can explicitly solve for H 0(x, p)
as well as verify (3.13), this result is used in all the examples in this paper.

A.2. Proof of the LDP Corollary 3.8

Proof. For each x ∈ EX , p ∈ K ⊂ R let eξx,p ∈ D(H 0) denote the eigenfunction associated
with the eigenvalue problem (3.11), that is,

V (y; x, p) + e−ξx,p(y)L x,p
1 eξx,p(y)

= H 0(x, p), ∀yEY .

For θ ∈ (0, 1) we let ϕx,p be the function satisfying (3.13) of the Lyapunov Condition 3.4, and
define the following two sequences of functions:

f0,N (x, y) = f0(x) +
1
N

((1 − θ )ξx,p(y) + θϕx,p(y)),

f0(x) = φ(x) + γ log(1 + x2)

for some γ > 0 and φ ∈ C1
c (EX ), as well as

f1,N (x, y) = f1(x) +
1
N

((1 + θ )ξx,p(y) − θϕx,p(y))

f1(x) = φ(x) − γ log(1 + x2).
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Then, for p = ∇ f0, we have (using eigenfunction property of ξx,p and (3.13) for ϕx,p)

HN f0,N (x, y) = V (y; x, p) +

∑
k:βk=1

λN
k (z)eζ̃

X
k ·p(e((1−θ )ξx,p+θϕx,p)(y+ζ̃Y

k )−((1−θ )ξx,p+θϕx,p)(y)
− 1

)
+

∑
k:βk>1

λN
k (z)̃ζ Y

k · ∇((1 − θ )ξx,p + θϕx,p)(y) + N−1ε(x, y)

≤ V (y; x, p) + (1 − θ )e−ξx,p Lx,p
1 eξx,p (y) + θe−ϕx,p Lx,p

1 eϕx,p (y) + N−1ε(x, y)

= (1 − θ )H0(x, p) + θV (y; x, p) + θe−ϕx,p Lx,p
1 eϕx,p (y) + N−1ε(x, y)

≤ (1 − θ )H0(x, p) − θ
(
(c − 1)V (y; x, p) + d

)
+ N−1ε(x, y).

Hence, for c′ > 0 we have that {HN ,0 f0,N ≥ −c′
} ∩ { f0,N ≤ c′

} is contained in compact subset
of EX × EY (since V (y; x, p) has compact level sets and H 0 is finite), and for any {xN , yN } in a
compact subset of EX × EY with xN → x

lim sup
N→∞

HN f0,N (xN , yN ) ≤ sup
y∈EY

{
(1 − θ )H0(x, p) − θ

(
(c − 1)V (y; x, p) + d

)}
=: H0(x, p; θ )

(which by (3.13) is well defined). Similarly, for p = ∇ f1,

HN f0,N (x, y) ≥ V (y; x, p) + (1 + θ )e−ξ L x,p
1 eξ (y) − θe−ϕL x,p

1 eϕ(y) + N−1ε(x, y)

= (1 + θ )H 0(x, p) − θV (y; x, p) − θe−ϕL x,p
1 eϕ(y) + N−1ε(x, y)

≥ (1 + θ )H 0(x, p) + θ
(
(c − 1)V (y; x, p) + d

)
+ N−1ε(x, y),

for c′ > 0 {HN ,1 f1,N ≤ c′
} ∩ { f1,N ≥ −c′

} is contained in compact subsets of EX × EY , and for
any {xN , yN } in a compact subset of EX × EY with xN → x

lim sup
N→∞

HN f1,N (xN , yN ) ≥ H1(x, p; θ ) := inf
y∈EY

{
(1 + θ )H0(x, p) + θ

(
(c − 1)V (y; x, p) + d

)}
.

As all the conditions of Lemma 6 in [23] are met, it insures that the two functions uh and
uh constructed as in the proof of Theorem 3.6 from the sequence of viscosity solutions of
∂t uN = HN u are, respectively, a sub-solution of ∂t u = H0(x,∇u) and a super-solution of
∂t u = H1(x,∇u) with the same initial condition. By construction uh

≥ uh and the reverse is
immediate once we notice that in this case the operators H0(x, p) and H1(x, p) given by

H0(x, p) := inf
θ∈(0,1)

sup
y∈EY

{
(1 − θ )H 0(x, p) − θ

(
(c − 1)V (y; x, p) + d

)}
and

H1(x, p) := sup
θ∈(0,1)

inf
y∈EY

{
(1 + θ )H 0(x, p) + θ

(
(c − 1)V (y; x, p) + d

)}
coincide and are equal to H 0 (see also [17] Appendix B, Lemma 11.4). □

A.3. Proof of the comparison principle Lemma 3.7

Proof. (a) We first prove the comparison principle under the assumptions on H 0 given in (a).
Let A = sup{0}×EX

(u1 − u2)+, and suppose for some x̃ and t̃ , u1 (̃t, x̃) − u2 (̃t, x̃) = A + δ (∗)
with δ > 0. For β,m, η > 0, N < ∞ define

ψN (t, x, s, y) = u1(t, x) − u2(s, y) −
N
2

[
|x − y|

2
+ |t − s|2

]
− β

(
g(x)m

+ g(y)m)
− η(t + s),
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where g(x) =

√
1 + |x |

2. Now choose β, η such that 2βg(̃x)m
+ 2η̃t ≤

δ
2 holds for all m ≤ 1.

Then (∗) implies

sup
[0,T ]×EX ×[0,T ]×EX

ψN (t, x, s, y) ≥ ψN (̃t, x̃, t̃, x̃) = A + δ − 2βg(̃x)m
− 2η̃t ≥ A +

δ

2
, (A.6)

and we show this gives a contradiction.
SinceψN is USC and tends to −∞ as |x |+|y| → ∞ its maximum in [0, T ]×EX ×[0, T ]×EX

is achieved at a point (t N , x N , s N , yN ). By (A.6) ψN (t N , x N , s N , yN ) ≥ A +
δ
2 and u1, u2

bounded imply β(g(x N )m
+ g(yN )m) ≤ sup(u1 − u2) − A −

δ
2 =: c1 ≥ 2β for all N , all

m ≤ 1. Hence, g(x N ), g(yN ) ≤ ( c1
β

)1/m and for R := ( c1
β

)1/m > 0 we have

|x N |, |yN | ≤ R, ∀N < ∞. (A.7)

Using ψN (t N , x N , t N , x N ) + ψN (s N , yN , s N , yN ) ≤ 2ψN (t N , x N , s N , yN ) we have

N
2

[
|x N − yN |

2
+ |t N − s N |

2
]

≤
1
2

[
u1(t N , x N ) − u1(s N , yN ) + u2(t N , x N ) − u2(s N , yN )

]
≤ c2,

where c2 := sup|u1|+ sup|u2|. Therefore, |x N − yN |+ |t N − s N | ≤

√
2
N c2, and |x N − yN |, |t N −

s N | → 0 as N → ∞. We can also show N
2

[
|x N − yN |

2
+ |t N − s N |

2
]

→ 0. Let

S = max
|x |≤R,t≤T

[
(u1 − u2)(x) − 2βg(x)m

− 2ηt
]
,

then for all N due to (A.7) we have

S = max
|x |≤R,t≤T

ψN (t, x, t, x) ≤ max
|x |,|y|≤R,t,s≤T

ψN (t, x, s, y) = ψN (t N , x N , s N , yN )

≤ u1(t N , x N ) − u2(s N , yN ) − β(g(x N )m
+ g(yN )m) − η(t N + s N ) := SN .

If we show limN→∞SN ≤ S this will imply that limN→∞
N
2

[
|x N − yN |

2
+ |t N − s N |

2
]

= 0.
Suppose there exists Nk → ∞ such that limNk→∞SNk > S. Since |x N |, |yN | ≤ R and
t N , s N ≤ T we can assume that limNk→∞(x Nk , yNk

, t Nk , s Nk ) = (x, y, t, s) with |x |, |y| ≤ R,
and t, s ≤ T ; and since |x N − yN | + |t N − s N | → 0 we have x = y and t = s. Since u1 − u2 is
USC we have

lim
Nk→∞

ψN (t Nk , x Nk , s Nk , yNk
) ≤ lim

Nk→∞

SNk

= lim
Nk→∞

u1(t Nk , x Nk ) − u2(s Nk , yNk
) − β(g(x Nk )m

+ g(yNk
)m) − η(t Nk + s Nk )

≤ u1(t, x) − u2(t, x) − 2βg(x)m
− 2ηt ≤ S

by definition of S, which contradicts the assumption that limNk→∞SNk > S.
We next show that for some N < ∞ we have t N , s N > 0 for all N > N . Suppose, on

the contrary, there exists Nk → 0 such that either tNk = 0 or sNk = 0 for all k. By the same
arguments as before we can assume that limNk→∞(x Nk , yNk

, t Nk , s Nk ) = (x, y, t, s) where x = y
and t = s = 0. Then, if s Nk = 0,

ψN (t Nk , x Nk , s Nk , yNk
) ≤ u1(t Nk , x Nk ) − u2(0, yNk

),

while if t Nk = 0,

ψN (t Nk , x Nk , s Nk , yNk
) ≤ u1(0, x Nk ) − u2(s Nk , yNk

).
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Using the fact that u1 − u2 is USC and the definition of A we have

lim
Nk→∞

ψN (t Nk , x Nk , s Nk , yNk
) ≤ u1(0, x) − u2(0, x) ≤ A,

which contradicts (∗) according to which ψN (t N , x N , s N , yN ) ≥ A +
δ
2 for all N with δ > 0.

We now define two test functions ϕ1, ϕ2 ∈ C1([0, T ] × EX )

ϕ1(t, x) := u2(s N , yN ) +
N
2

[
|x − yN |

2
+ |t − s N |

2]
+ β

(
g(x)m

+ g(yN )m)
+ η(t + s N ),

ϕ2(s, y) := u1(t N , x N ) −
N
2

[
|x N − y|

2
− |t N − s|2

]
− β

(
g(x N )m

+ g(y)m)
− η(t N + s),

so that (t N , x N ) is a point of maximum of u1(t, x) −ϕ1(t, x) and (s N , yN ) is a point of minimum
of u2(s, y) − ϕ2(s, y). At the extremum their derivatives in time are

∂tϕ1(t N , x N ) = N (t N − s N ) + η, ∂tϕ2(s, y) = N (t N − s N ) − η,

and in space are

Dxϕ1(t N , x N ) = N (x N − yN ) + γ x N , Dyϕ2(s N , yN ) = N (x N − yN ) − τ yN ,

with γ = mβg(x N )m−2, τ = mβg(yN )m−2. Since ∀N > N we have t N , s N ∈ (0, T ], and u1 and
u2 are sub- and super-solutions of ∂t u0 − H 0(x, Dx u0) = 0 on (0, T ] × EX , we have

∂tϕ1(t N , x N ) − H 0
(
x N , Dxϕ1(t N , x N )

)
≤ 0,

∂sϕ2(s N , yN ) − H 0
(
yN , Dyϕ2(s N , yN )

)
≥ 0,

so that
2η = ∂tϕ1(t N , x N ) − ∂tϕ2(s N , yN )

≤ H 0
(
x N , N (x N − yN ) + γ x N

)
− H 0

(
yN , N (x N − yN ) − τ yN

)
.

(A.8)

Using (3.16) letting λ = N , p = γ x N , q = −τ yN we get that the right-hand side is bounded
above by

2η ≤ ωR

(
|x N − yN | + N |x N − yN |

2
)

+ ω̃1

(
mβ

[
x N g(x N )m−2

+ yN g(yN )m−2])
≤ ωR

(
|x N − yN | + N |x N − yN |

2
)

+ ω̃1(mc1)

since β(g(x N )m
+ g(yN )m) ≤ c1. For m ≤ min(1, 1

c1
) small enough so that ω̃1(mc1) < η, and for

N large enough so that ωR(|x N − yN | + N |x N − yN |
2) < η, we get a contradiction in the above

inequality. This establishes the comparison principle under the conditions given in (a).
(b) We now extend the comparison principle under the more relaxed assumptions on H 0 given

in (b). For many examples the condition (3.16) is too restrictive and needs to be extended to a
more local condition in p. This can be done if (3.14) has a coercive behaviour in p uniformly for
bounded x as we show next.

Let A = sup{0}×EX
(u1 −u2)+, and x̃, t̃ be such that u1 (̃t, x̃)−u2 (̃t, x̃) = A+δ (∗) with δ > 0,

as before. For β,m > 0, N ,M < ∞ and g(x) =

√
1 + |x |

2 now define

ψN ,M (t, x, s, y) = u1(t, x) − u2(s, y) −
N
2

|x − y|
2

−
M
2

|t − s|2 − β
(
g(x)m

+ g(y)m)
−
δt
4T
.

Now chose β so that 2βg(̃x)m
≤

δ
4 and hence (∗) implies (A.6) as before.

Let (t N ,M , x N ,M , s N ,M , yN ,M ) be the point at which ψN ,M achieves its maximum in [0, T ] ×

EX × [0, T ] × EX . By (A.6) we again get |x N ,M |, |yN ,M | ≤ R, ∀N ,M < ∞. Also
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from ψN ,M (t N ,M , x N ,M , t N ,M , x N ,M ) + ψN ,M (s N ,M , yN ,M , s N ,M , yN ,M ) ≤ 2ψN ,M (t N ,M , x N ,M ,

s N ,M , yN ,M ) we now get, with c2 = sup|u1| + sup|u2|,

N
2

|x N − yN |
2
+

M
2

|s N − t N |
2

≤
δ

4T
(s N ,M − t N ,M ) + c2 ≤

δ

4
+ c2 < ∞,

hence |x N ,M − yN ,M | → 0 as N → ∞ and |s N ,M − t N ,M | → 0 as M → ∞.
Furthermore, the same argument as in (a) shows that ∃N ,M < ∞ such that, for all β subject

to our earlier choice, we have that t N ,M , s N ,M > 0 for all N > N and M = M . We now fix
M = M .

Defining test functions

ϕ1(t, x) := u2(s N ,M , yN ,M ) +
N
2

|x − yN ,M |
2
+

M
2

|t − s N ,M |
2
+ β

(
g(x)m

+ g(yN ,M )m)
+
δt
4T
,

ϕ2(s, y) := u1(t N ,M , x N ,M ) −
N
2

|x N ,M − y|
2
−

M
2

|t N − s|2 − β
(
g(x N ,M )m

+ g(y)m)
−
δt N ,M

4T
,

we now have, with γ = mβg(x N ,M )m−2, τ = mβg(yN ,M )m−2,

δ

4T
+ M(t N ,M − s N ,M ) ≤ H 0

(
x N ,M , N (x N ,M − yN ,M ) + γ x N ,M

)
, (A.9)

and

M(t N ,M − s N ,M ) ≥ H 0
(
yN ,M , N (x N ,M − yN ,M ) − τ yN ,M

)
. (A.10)

For fixed M, β as chosen earlier, (A.9) and (A.10) together with (3.17) coercivity assumption
on H 0 in p, imply that

sup
N>N

N (x N ,M − yN ,M ) =: ℓ < ∞

since we already have |γ x N ,M |, |τ yN ,M | ≤ mβ, ∀N ,M < ∞

Subtracting (A.10) from (A.9) we get
δ

4T
≤ H0

(
x N , N (x N ,M − yN ) + γ x N ,M

)
− H0

(
yN ,M , N (x N ,M − yN ,M ) − τ yN ,M

)
, (A.11)

and using (3.16) with ωR,ℓ in place of ωR , with the same choice of λ = N , p = γ x N , q = −τ yN
as earlier, gives

δ

4T
≤ ωR,ℓ

(
|x N ,M − yN ,M | + N |x N ,M − yN ,M |

2
)

+ ω̃1

(
mβ

[
x N ,M g(x N ,M )m−2

+ yN ,M g(yN ,M )m−2])
≤ ωR,ℓ

(
|x N ,M − yN ,M | + N |x N ,M − yN ,M |

2
)

+ ω̃1(mc1).

For m ≤ min(1, 1
c1

) small enough so that ω̃1(mc1) < δ/8T , and N large enough so that
ωR,ℓ(|x N ,M −yN ,M |+N |x N ,M − yN ,M |

2) < δ/8T , we get a contradiction in the above inequality,
thus establishing u1 ≤ u2 on [0, T ] × EX .

The fact that it suffices to check a non-uniform coercive condition in p for H 0 when it is also
convex in p is shown in Lemma 9.16 in [17] (using |H 0| instead of H 0). □
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