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A STOCHASTIC COMPARTMENTAL MODEL FOR FAST AXONAL
TRANSPORT∗
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Abstract. In this paper we develop a probabilistic microscale compartmental model and use
it to study macroscale properties of axonal transport, the process by which intracellular cargo is
moved in the axons of neurons. By directly modeling the smallest scale interactions, we can use
recent microscopic experimental observations to infer all the parameters of the model. Then, using
techniques from probability theory, we compute asymptotic limits of the stochastic behavior of
individual motor-cargo complexes, while also characterizing both equilibrium and nonequilibrium
ensemble behavior. We use these results in order to investigate three important biological questions:
(1) How homogeneous are axons at stochastic equilibrium? (2) How quickly can axons return to
stochastic equilibrium after large local perturbations? (3) How is our understanding of delivery time
to a depleted target region changed by taking the whole cell point of view?
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1. Introduction. In all cells, one finds that proteins, membrane-bound organ-
elles, and other structures (e.g., chromosomes) are transported from place to place at
speeds much higher than diffusion. Though these transport processes are fundamen-
tal to cell function, many of the underlying mechanisms, organizational principles,
and regulatory features remain unknown. Axonal transport is one of the best studied
systems because the transport is basically one-dimensional since axons are long and
narrow. There are two speeds of axonal transport. Fast transport goes at speeds of
roughly 0.2 to 0.5 meters/day [26], [32], while slow transport goes at approximately
1 millimeter/day, the rate of axon growth and regeneration [6], [26]. The biology and
principles of slow transport are not yet clear [6], but the basic mechanisms of fast
axonal transport were discovered in the 1980s [2], [3], [28], [42]. The model in this
paper refers to fast axonal transport, which we will henceforth call axonal transport.

The axonal transport apparatus consists of vesicles which form reversible chemi-
cal bonds with motor proteins that bind reversibly to microtubules which run parallel
to the long dimension of the axon [1], [45]. When the vesicle-motor protein complex
is assembled on the microtubule, the complex steps stochastically with step size ap-
proximately 8 nanometers for kinesin and dynein and 10 nanometers for myosin [7],
[11], [17], [39]. The vesicles enter from the cell body on microtubules and then detach
and reattach to the transport mechanism at random times.

In this paper we propose a spatial Markov-chain compartmental model based on
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1532 L. POPOVIC, S. A. MCKINLEY, AND M. C. REED

these dynamics. We will assume independence of the interactions and exponential
wait times between events. While we address the validity of these assumptions in the
discussion section, we consider this a useful “first-order” approximation that permits
study of the dynamics from both the perspective of individual vesicles as well as that
of the full spatial system. Such a model unifies all earlier deterministic and stochastic
modeling efforts and can accommodate both qualitative and quantitative experimental
data observed on multiple scales.

In much experimental work in the 1970s and 1980s, radio-labeled amino acids
were put into the cell bodies continuously or for a few hours. The amino acids were
incorporated into proteins that were packaged into vesicles and put on the transport
system so that at later times radioactivity could be seen moving progressively down
the axons. In the continuous infusion case, one would see a wave of radioactivity
with a sharp but slowly spreading wavefront propagating at constant velocity down
the axon. In the case of infusion for a few hours one would see at long times a
slowly spreading pulse of radioactivity that looked normally distributed. It was to
understand this behavior that Reed and Blum constructed PDE models for axonal
transport [3], [33], [34]. These models did not have traveling wave solutions, but the
data certainly looked like approximate traveling waves. In [35] it was shown by a
perturbation theory argument that, in the asymptotic limit where the unbinding and
binding rates k2 and k1 get large, the solution approaches a slowly spreading traveling
wave or a normal pulse. Recently, in a series of papers, Friedman and coworkers have
introduced new PDE models and proved these results rigorously [13], [14], [15], [16].

Probabilistic models for axonal transport were introduced and used for simula-
tions already in the 1980s [38], [40]. However, rigorous work began with Lawler [27] in
1995 and was continued by Brooks [5], who used a continuous time stochastic model
to show that the distribution of an individual particle is a spreading Gaussian at large
times. Brooks also proved tail estimates for the central limit theorem and used them
to estimate the error from normal. Independently, Bressloff [4] developed a discrete
stepping model and performed an analysis under the assumption that the rate of un-
binding and binding to transport is fast relative to lateral velocity over the length
scale of interest. The author derived a characterization of the spreading wavefront of
a particle entering at the nucleus and traveling to the distal end. This model served
as the basis for later investigations by Newby and Bressloff [30], [31] wherein the au-
thors characterize the axonal transport system as an intermittent search for hidden
targets.

In this paper we revise the existing probabilistic models in order to study ran-
domness in the system as a whole rather than exclusively from the point of view of
an individual particle. Our goal is not only to recover and generalize previous results
but also to investigate three specific, biologically important, properties of the whole
stochastic system.

1.1. Summary of results. In section 2, we create a continuous-time Markov-
chain queueing model for the axonal transport system. We show how to use experi-
mental data to determine (or estimate) all the parameters of the model.

In section 3, we take the individual vesicle point of view. We prove the asymp-
totic forms in [35] with rigorous error estimates. We show that in the limit as the
compartment size becomes small our model becomes the probabilistic model of [5].
We also show that in the limit as the lengths of the axon and time become large
(with the scale of axon length on the order of the squared scale of time) our model
becomes the PDE model of [34]. Since we assume that particles are independent, the
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AXONAL TRANSPORT 1533

time evolution of the law of an individual will reflect the behavior of an ensemble of
particles released at the same time.

In section 4 we adopt the full spatial system perspective to quantify stochasticity
along the length of the axon. We begin by calculating in Proposition 4.1 the stationary
distribution of a flow-through system that has sustained input from the nucleus, while
particles are removed upon reaching the distal end. The stationary distribution has a
product Poisson structure which allows for seamless transition between spatial scales.

With this mathematical model, we are able to make precise statements about
three biologically important system properties. In the stationary distribution, the
number of vesicles in each slice of the axon is independent and identically distributed
(i.i.d.) (Proposition 4.1); however, this in and of itself is not sufficient to account
for the sense that samples taken for different parts of the cell “look the same.” We
compute in section 4.2 the coefficient of variation for the number of vesicles in sections
of different length and show that the coefficient of variation is low for all but the
smallest length scales. In section 4.3, we study the intermittent search problem posed
by Newby and Bressloff [30] from the system point of view. Efficient transport to
locations that need material must balance the speed of transport of material from the
nucleus to the distal end of the cell with the rates of dissociation from the transport
apparatus. We calculate the expected hitting time for a hidden target by all vesicles in
the system. In so doing we encounter the counterintuitive result that while increasing
the velocity of the motors while on transport increases the chance of any particular
vesicle missing the target, the expected hitting time by the system actually decreases.

This hitting time approach is natural for needed material that is sparsely dis-
tributed throughout the axon, but when the needed cargo in question is more com-
mon, the time to replenishment is better addressed through the ODE approach that
we develop in section 4.4. Due to the product structure of the law of the transient
dynamics, this nonequilibrium behavior is determined by the 2N -dimensional ODE
governing the means. From this we estimate the timescale of return to equilibrium as
a function of the length scale of interest.

2. The model and its parameters. Let L be the length of the axon, divided
evenly into N = L/δ lateral sections each of length δ, equal to the step size of the
motor protein. Within each section, we disregard any further spatial geometry and
take the particles to be in one of two states:

• an on-transport state that steps laterally at a rate r = v/δ per section, or
• an off-transport state that does not step laterally.

We use a 2N -dimensional continuous-time Markov chain {(Qi(t), Pi(t)), i = 1, . . . , N}
to model the particle dynamics, where

• Qi(t) is the number of particles at time t in the on-transport state in section i;
• Pi(t) is the number of particles at time t in the off-transport state in section i.

Definition 2.1 (stochastic compartmental model). Let ({(Qi(t), Pi(t)), i =
1, . . . , N})t≥0 be a continuous-time Markov chain on the state space N

N × N
N with

the following transitions and time dependent rates:
• (lateral transport) (Qi, Qi+1) → (Qi − 1, Qi+1 + 1) at rate rQi(t);
• (switch from on-transport to off-transport) (Qi, Pi) → (Qi − 1, Pi +1) at rate
k2Qi(t);

• (switch from off-transport to on-transport) (Pi, Qi) → (Pi − 1, Qi+1) at rate
k1Pi(t);

• (production of new particles) (Q1) → (Q1 + 1) at rate rq0;
• (removal of particles at distal end) (QN ) → (QN − 1) at rate rQN (t).
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Fig. 1. A spatially discretized compartmental model for an on-and-off transport system.

The lateral transport rate, r = v/δ, is inversely proportional to the length scale
so that the mean number of particles per unit length is invariant with respect to
rescaling δ. We will assume that the rate of production q0 = δρ0 for some constant
ρ0 > 0 in order for the mean number of particles in each compartment to scale with
the size δ of each compartment. This will imply that the mean number of particles
per unit length scales as ρ0. A graph of the model is depicted in Figure 1.

In order to ensure the Markov property, we use exponential random variables for
the waiting times between transition events. Specifically, we mean that after a given
event we assign a new independent random variable to each of the 3N+2 possible next
events, exponentially distributed with the appropriate rate parameter. The system
of values updates according to the transition associated with the minimum of these
waiting times. Then we create a new set of exponential random variables, and the
process proceeds as before.

The advantage of computing explicit formulas for quantities that can be observed
in experiments is that the experimental data can then be used to determine the param-
eter values in the model. For the characterization of the approximate wavefront speed
and spreading in section 3 and the homogeneity calculations in section 4 we need order-
of-magnitude estimates for the parameters. Actual parameter values will certainly
differ depending on the particular neural tissue and the particular particles being
transported. However, we can get order-of-magnitude estimates from existing data.
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AXONAL TRANSPORT 1535

First we recall that fast transport has been observed to travel at speeds of 0.2 to
0.5 m per day. We can assume that the average velocity of particles while physically
bound to microtubules is roughly 1 m per day, or v = 10−6 m/s. We assume that the
compartment size scales as the length scale of the individual steps of the motor protein,
so δ ∼ 10−8m. This implies that the rate parameter should be r = v/δ = 100s−1.

We now turn our attention to the on-off rates rates k2 and k1. These can be de-
termined from experimentally observed run lengths on the transport system. Indeed,
Dixit et al. [9] show that a typical run along microtubules for dinein and kinesin is on
the order of 10−6m. We can compare this with the theoretical run length of the model
to determine off-rate k2. Within the model, at each step on the transport mechanism
the particle has a binary decision to jump laterally along the transport with proba-
bility r/(k2 + r) or to jump off with probability k2/(r + k2). The number of jumps
along the transport system before jumping off is therefore geometrically distributed
on the set {0, 1, . . .} with success probability r

r+k2
. It follows that the average num-

ber of steps in the run is r
k2

and therefore the average run length is r
k2

× 10−8m.

Setting this equal to the average experimental run length of 10−6 from [9], we see
that r

k2
∼ 100, implying that k2 ∼ 1s−1. As we will see in the computation of the

stationary distribution in section 4.1, the ratio of the expected number of particles on
the track to those off the track is k2

k1
. Dixit et al. [9] found that approximately 75% of

the particles were motile, so this ratio is approximately equal to 3. Since k2 ∼ 1s−1,
we see that k1 ∼ 1

3 .
It remains to estimate q0. We will see in Proposition 4.1 that the mean number

of particles per compartment is (1 + k2

k1
)q0 = 4q0. Of course, axons have a large

variety of diameters, and larger axons will have more vesicles per unit length, so one
expects a range of values for q0. However, examination of a large number of electron
micrographs of axonal cross-sections (see, for example, [19, Fig. 3], [20], [29]), which
are typically 100 nm thick, enables one to estimate the number of vesicles per 100 nm
segment. This number is typically in the range of 10 to 100, which implies that there
are 1 to 10 vesicles per compartment in our model. Therefore, q0 is in the range 0.25
to 2.5 for various axons.

We remark that we are ignoring some aspects of the physics and the biology of
axonal transport. We are not including diffusion of the vesicles off the track. We
are treating the microtubule track as though it were a single continuous entity from
one end of the axon to the other, when in fact it consists of numerous, separated,
microtubule fragments. And, we are ignoring retrograde transport and the details of
the motor proteins. Nevertheless, this simple model will enable us to investigate the
homogeneity questions that are the main goal of this paper.

3. Dynamics from the particle perspective. In this section we calculate
properties of the stochastic dynamics by using stochastic convergence theorems and
stochastic averaging theorems from probability theory. We first see that, in the δ → 0
limit, the law of the location of a single particle corresponds to that of a particle with
a piecewise linear Markov motion. We then show this law can be approximated by
the Green’s function of a linear PDE. This enables us to obtain, as a special case, the
asymptotic behavior of the PDE models for axonal transport in either a rate limiting
or a perturbed setting.

3.1. The active transport mode. We first consider the simple case where
the particle starts at Xδ

0 = 0 and stays exclusively in active transport mode. Let
Xδ

t ∈ {0, δ, 2δ, . . . , L} be the lateral position of a particle at time t, and let nδ
t be the
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1536 L. POPOVIC, S. A. MCKINLEY, AND M. C. REED

number of jumps made by the particle as of time t. Observe that Xδ = δnδ.
Proposition 3.1. Let k2 = k1 = 0 and r = v/δ > 0; then the position of the

particle satisfies, for any time t < ∞,

sup
s≤t

∣∣Xδ
s − vs

∣∣ −→
δ→0

0 a.s.

and, for B a standard Brownian motion,

1√
δ

(
Xδ

t − vt
)
t≥0

=⇒
δ→0

√
v
(
Bt

)
t≥0

in distribution on the Skorokhod space of cadlag (right continuous left limited) func-
tions.

Proof. Since nδ is a Poisson process with rate r = v/δ, defining Nt := nδ
δt we get

a Poisson process N with rate v, and we have Xδ
· = δN·/δ. Our results then follow

directly from the functional law of large numbers (FLLN) and the functional central
limit theorem (FCLT) for the Poisson process N .

3.2. The on/off dynamics. We now consider a particle which undergoes tran-
sitions from the on-transport state to the off-transport state and back. Denote again
by Xδ

t ∈ {0, δ, 2δ, . . . , L} the lateral position of a particle at time t, and let nδ
t be the

number of lateral transition jumps made by the particle as of time t. Observe that
the particle will spend only a fraction of its time in active transport, and hence the
lateral speed of the particle should be slower than before.

A noncompartmental stochastic model for axonal transport, introduced by Brooks
in [5], is as follows. A particle can be in one of two states:

• an on-transport state with deterministic lateral velocity v, or
• an off-transport state with lateral velocity 0.

We use a two-dimensional Markov process to model the particle dynamics, where
• Xt is the lateral position of this particle at time t, and
• ξt is the indicator for whether it is on (1) or off (0) transport at time t.

Definition 3.2 (stochastic noncompartmental model). Let (Xt, ξt)t≥0 be a
piecewise-linear Markov process with values in (R+, {0, 1}) started at (X0, ξ0) = (0, 1)
with the following dynamics:

• (switch from on-transport to off-transport) (Xt, 1) → (Xt, 0) at rate k2;
• (switch from off-transport to on-transport) (Xt, 0) → (Xt, 1) at rate k1;

• (lateral travel) Xt =
∫ t

0 vξsds.
The path of (Xt)t≥0 consists of alternating sequences of Exponential(k2) stretches

of time where the lateral position increases linearly with speed v, and Exponential(k1)
stretches of time where it remains constant.

Proposition 3.3. Let k2, k1 > 0 and r = v/δ > 0; then the position of the
particle converges,

(Xδ
t )t≥0 =⇒

δ→0
(Xt)t≥0,

in distribution on the Skorokhod space of cadlag functions.
Proof. If we let ξδ be the indicator of whether the particle in the compartmental

model is on (ξδ = 1) or off (ξδ = 0) transport, then (Xδ
t , ξ

δ
t )t≥0 is a strong Markov

process. We will see that ξδ is a continuous-time Markov chain on {0, 1} (independent
of δ), and conditionally on ξδ the transition law of X is easily expressed. Likewise,
for the noncompartmental model above, (Xt, ξt)t≥0 is a strong Markov process, with
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ξ the same continuous-time Markov chain on {0, 1} as ξδ, and conditionally on ξ the
change in X is easily given in terms of its linear speed and ξ.

We will start by showing that for any t > 0, (Xδ
t , ξ

δ
t ) converges to (Xt, ξt) in dis-

tribution as δ → 0. We then show that the finite dimensional distributions of (Xδ, ξδ)
converge to those of (X, ξ). A tightness argument finally implies (see Lemma 16.2
and Theorem 16.3 in [21]) that (Xδ, ξδ) converges to (X, ξ) in distribution on the
Skorokhod space of cadlag processes.

Suppose that initially the particle is on transport at x0, so (Xδ
0 , ξ

δ
0) = (x0, 1).

The first time τ1 = inf{t > 0 : ξδt = 0} at which the particle steps off transport
has Exponential(k2) distribution, irrespective of δ. The first subsequent increment in
time σ1 = inf{t > 0 : ξδτ1+t = 0} after which the particle steps back on transport has
Exponential(k1) distribution, irrespective of δ as well. This is repeated, and ξδ is a
simple continuous-time Markov chain on {0, 1} with transition rates k2 and k1, from
1 → 0 and 0 → 1, respectively.

Until time τ1 the particle behaves as if it were in active transport (k2 = k1 = 0)
and conditionally on the value of τ1, for any 0 ≤ s ≤ τ1 the lateral change in position
over time s, Xδ

s −Xδ
0 , is δn

δ
s, where nδ

s is a Poisson(rs) random variable. Moreover,
by results of Proposition 3.1, conditionally on the value of τ1, we have

sup
0≤s≤τ1

∣∣(Xδ
s −Xδ

0 )− vs
∣∣ −→

δ→0
0 a.s.

To get the unconditioned law of Xδ
τ1 −Xδ

0 , we observe that the number of boxes the
particle traverses before it steps off nδ

τ1 has a Geometric(k2/(k2+r)) distribution (note
that a Poisson rate r process sampled at an Exponential(k2) time independent of the
process has this distribution). Since k2/δ(k2 + r) → k2/v as δ → 0, Xδ

τ1 −Xδ
0 = δnδ

τ1
converges in distribution to Exponential(k2/v) variable.

Consider now the particle in the noncompartmental model. It is immediate from
the definition of the model that ξ has the same law of a continuous-time Markov chain
on {0, 1} with transition rates k2 and k1, from 1 → 0 and 0 → 1, as ξδ. Since we prove
our convergence in law results by first conditioning on the values of ξδ and ξ, we can
without loss of generality henceforth assume ξδ = ξ a.s. and drop its superscript.

Suppose that initially the particle in the noncompartmental model is on transport
at x0, so (X0, ξ0) = (x0, 1). Conditionally on τ1, for all 0 ≤ s ≤ τ1, Xs − X0 =
vs and Xτ1 − X0 = vτ1; hence, unconditionally, Xτ1 − X0 is an Exponential(k2/v)
random variable. We now have both sup0≤s≤τ1

∣∣(Xδ
s −Xδ

0)− (Xs−X0)
∣∣ → 0 a.s. and

Xδ
τ1 −Xδ

0 ⇒ Xτ1 −X0.
Between times τ1 and σ1 the particle in both models stays in place, so condition-

ally on values of τ1, σ1, and of Xδ
τ1 , Xτ1 , supτ1≤s≤τ1+σ1

∣∣(Xδ
s −Xδ

τ1)− (Xs−Xτ1)
∣∣ ≡ 0,

and Xδ
τ1+σ1

− Xδ
0 ⇒ Xτ1+σ1 − X0. At time τ1 + σ1, the same process starts over

from initial values (Xδ
τ1 , 1) and (Xτ1 , 1) in the compartmental and noncompartmental

models, respectively.
Let τ1, σ1, τ2, . . . be the sequence of time increments between the consecutive times

when the particle in both models gets off and gets back on transport, let σ0 = 0, and
for i ≥ 1

τi = inf{t > 0 : ξσ
i−1

+t = 0}, σi = inf{t > 0 : ξτi+t = 1}.

Then (τi)i≥1 and (σi)i≥1 are independent sequences of i.i.d. Exponential(k2) and
Exponential(k1) variables, respectively. For any t > 0, let ηt be the number of times
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the particle in either model gets back on transport until time t and η′t the number of
times it gets off:

ηt = inf

{
k ≥ 0 :

k∑
i=1

(τi + σi) ≤ t

}
, η′t = inf

{
k′ ≥ 0 :

k′∑
i=1

τi +

k′−1∑
i=1

σi ≤ t

}
.

Note that η′t = ηt iff ξt = 1, and η′t = ηt + 1 iff ξt = 0. Let τ̃t be the last time
before time t that the particle changed whether it was on or off transport; that is,
τt = sup{0 ≤ s ≤ t : ξs− �= ξs}. Then, we have

τt =

⎧⎪⎪⎨
⎪⎪⎩

ηt∑
i=1

(τi + σi) if η′t = ηt,

η′
t∑

i=1

τi +
ηt∑
i=1

σi if η′t = ηt + 1.

If η′t = ηt, then from time τt to t the particle is in active transport, and the same
convergence argument as before implies that conditionally on the values of τt and Xδ

τt ,

sup
τt≤s≤t

|(Xδ
s −Xδ

τt)− v(s− τt)| → 0 a.s.

AlsoXδ
τt−Xδ

0 = δnδ
τt where n

δ
τt is the number of boxes the particle traverses by time t.

Conditionally on the value of ηt, nδ
τt is a sum of ηt i.i.d. Geometric(k2/(k2 + r))

random variables; hence Xδ
τt − Xδ

0 converges in distribution to a sum of ηt i.i.d.
Exponential(k2/v) random variables. In the noncompartmental model, if η′t = ηt,
then conditionally on the values of ηt and τt, for τt ≤ s ≤ t, Xs −Xτt = v(s− τt) and
conditionally only on the value of ηt, X

δ
τt −X0 is a sum of ηt i.i.d. Exponential(k2/v)

variables. Hence, conditionally on ηt and τt, supτt≤s≤t

∣∣(Xδ
s −Xδ

τt)− (Xs−Xτt)
∣∣ → 0

a.s., and conditionally only on ηt, X
δ
τt −Xδ

0 ⇒ Xτt −X0.
If η′t = ηt+1, then from time τt to t the particle in both models stays in place, so

conditionally on ηt and τt, supτt≤s≤t

∣∣(Xδ
s−Xδ

τt)−(Xs−Xτt)
∣∣ = 0 a.s. Also, condition-

ally only on the value of η′t, n
δ
τt is a sum of η′t i.i.d. Geometric(k2/(k2 + r)) variables;

hence Xδ
τt −Xδ

0 converges in distribution to a sum of η′t i.i.d. Exponential(k2/v) vari-
ables. In the noncompartmental model, if η′t = ηt +1, conditionally only on the value
of η′t, X

δ
τt is a sum of η′t i.i.d. Exponential(k2/v) variables. Hence, conditionally only

on η′t, Xδ
τt −Xδ

0 ⇒ Xτt −X0.
Now, integrating over the possible values of ηt, η

′
t, and τt, we get that for any

t ≥ 0, (Xδ
t , ξ

δ
t ) ⇒ (Xt, ξt). Convergence of finite dimensional distributions follows

from an iterative use of the Markov property of (Xδ, ξδ) and (X, ξ), and the fact that
the increments of both (Xδ, ξδ) and (X, ξ) are stationary.

In order to verify tightness (see Theorem 16.11 in [21]) of the sequence of Markov
processes {(Xδ, ξδ)}δ>0, because (Xδ, ξδ) has stationary increments and is strong
Markov, it will suffice to check that for any ε > 0

lim
h→0

lim sup
δ→0

P
{||(Xδ

h, ξ
δ
h)− (Xδ

0 , ξ
δ
0)|| > ε

}
= 0,

where ||(x1, ξ1)−(x2, ξ2)|| = |x1−x2|+|ξ1−ξ2| is a distance metric onR+×{0, 1}. For
any δ > 0, the first change in the continuous-time Markov chain ξδ happens after an
Exponential(k) time (where k = k2 or k = k1 depending on whether ξδ0 = 1 or ξδ0 = 0)
and is independent of δ. Hence, at time h later, P

{
ξδh �= ξδ0

} ≤ 1 − e−kh. Moreover,
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AXONAL TRANSPORT 1539

irrespective of the value of ξδ, at time h later the value of |Xδ
h−Xδ

0 | ≤ δnδ
h, where n

δ is
a Poisson process with rate r = v/δ. Hence, P

{|Xδ
h −Xδ

0 | > ε
} ≤ δE

[
nδ
h

]
/ε = vh/ε.

Combining the two gives

P
{||(Xδ

h, ξ
δ
h)− (Xδ

0 , ξ
δ
0)|| > ε

} ≤ 1− e−kh + vh/ε for any δ > 0,

and the desired limit follows.
The process (Xδ, ξδ) : t ∈ [0,∞) 
→ (Xδ

t , ξ
δ
t ) ∈ δZ+ × {0, 1} is a Markov process

with cadlag paths whose generator is given by

Aδf(x, ξ) = rξ
[
f(x+ δ, ξ)− f(x, ξ)

]
+ k2ξ

[
f(x, ξ − 1)− f(x, ξ)

]
+ k1(1− ξ)

[
f(x, ξ + 1)− f(x, ξ)

]
for all f ∈ D(Aδ) = C0(δZ+ × {0, 1}).

The piecewise-linear process (X, ξ) : t ∈ [0,∞) 
→ (Xt, ξt) ∈ R+ × {0, 1} is a
Markov process with continuous paths whose generator is the closure of the operator

Af(x, ξ) = vξ∂xf(x, ξ)

+ k2ξ
[
f(x, ξ − 1)− f(x, ξ)

]
+ k1(1− ξ)

[
f(x, ξ + 1)− f(x, ξ)

]
for all f ∈ D(Aδ) = C1,0(R+ × {0, 1}).

Letting ιδ : δZ+ × {0, 1} 
→ R+ × {0, 1} be an embedding and f δ = f ◦ ιδ, then
Aδf δ → Af as δ → 0 for all f ∈ C1,0(R+ × {0, 1}) implies that the finite dimensional
distributions of (Xδ, ξδ) converge to those of (X, ξ). Verification of additional con-
ditions (see Theorem 19.25 of [21]) would also imply convergence of processes with
generators

{(
Aδ,D(Aδ)

)}
δ>0

to the process with generator
(
A,D(Aδ)

)
; however, we

thought this way of showing convergence in law was not as instructive.
The fact that an individual particle will have the distribution given by Proposition

3.3 as the size of the boxes decreases means that our model is a microscopic version
of the stochastic model used by Brooks [5] and that the hydrodynamic limit of our
model as δ → 0 is equal to the macroscopic stochastic model from [5].

An approximation of the particle’s position Xt is obtained in [5] to be Xt ≈
μt +

√
tσZ as t → ∞, where μ = k1v/(k2 + k1), σ = 2k2k1v

2/(k2 + k1)
3, and Z is

a standard normal variable. That approximation is valid only for large fixed values
of t, while we next extend this result to give an approximation for the whole time
trajectory of the particle’s path. This is accomplished by the following FCLT for the
position of the particle undergoing stochastic transport.

Proposition 3.4. Let X be the position of a particle following the piecewise-
linear Markov process from Proposition 3.3 started at X0 = 0 on transport; then

sup
s≤t

∣∣∣∣Xns

n
− k1

k2 + k1
vs

∣∣∣∣ −→
n→∞ 0 a.s. ∀t > 0,

and, if B denotes a standard Brownian motion,

√
n

(
Xnt

n
− k1v

k2 + k1
t

)
t≥0

=⇒
n→∞

√
2k2k1v2

(k2 + k1)3
(
Bt

)
t≥0

in distribution on the space of continuous functions.
Proof. For these results we use the notion of stochastic averaging [22], [23], [25].

Note that the indicator process ξ for being on- or off-transport is independent of the
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position X of the particle. Hence, the position of the particle X is a linear random
evolution process [10, Chap. 12], [18] driven by the independent indicator process ξ.
The generator of (X, ξ) is the closure of the operator

Af(x, ξ) = σ(ξ)∂xf(x, ξ) + λ(ξ)
[
f(x, s(ξ)) − f(x, ξ)

]
for all f ∈ D(A) = C1,0

0 (R+ × {0, 1}) (the space of all continuously differentiable
functions in x continuous in ξ and vanishing at infinity), where

σ(ξ) = vξ, λ(ξ) = k2ξ + k1(1− ξ), and s(ξ) = 1− ξ

(when ξ = 1, σ = v, λ = k2, and s = 0, and when ξ = 0, σ = 0, λ = k1, and s = 1).
In other words, if (X0, ξ0) = (0, 1), we have

Xt =

∫ t

0

vξsds, ξt =
1

2

(
1 + (−1)Y (

∫ t
0
λ(ξs)ds)

)
,

where Y is a rate 1 Poisson process, and Y (
∫ t

0
λ(ξs)ds) is a counting process of the

number of switches of ξ until time t.
Rescaling time and position of the process by 1/n, we get that (Xn·

n , ξn·) satisfies

Xnt

n
=

∫ t

0

vξnsds, ξnt =
1

2

(
1 + (−1)Y (n

∫
t
0
λ(ξns)ds)

)
,

and its generator is

Anf(x, ξ) = vξ∂xf(x, ξ) + n(k2ξ + (k1(1− ξ)))
[
f(x, s(ξ)) − f(x, ξ)

]
for all f ∈ D(An) = C1,0

0 (R+×{0, 1}). Note that ξn· switches at rate proportional to n,
forming an ergodic Markov chain with stationary distribution π(1) = k1/(k2 + k1),
π(0) = k2/(k2 + k1), and

∫
σ(ξ)π(ξ) = v

∫
ξπ(ξ) = vk1/(k2 + k1). Hence, the strong

ergodic theorem implies that

Xn

n
=

1

n

∫ n

0

vξsds −→
n→∞

vk1
k2 + k1

a.s.

We can extend this to a functional statement on any finite time interval [0, t]. Fix
t > 0 and take any Δ > 0; then there exists nΔ < ∞ a.s. such that∣∣∣∣Xn

n
− vk1

k2 + k1

∣∣∣∣ < Δ

t
∀n > nΔ.

Now, let M = supn≤nΔ
|Xn − k1/(k2 + k1)vn|, which is finite a.s. since nΔ < ∞ a.s.

Let n > M/Δ. Then, for any 0 ≤ s ≤ t we have that either ns > nΔ, in which case∣∣∣∣Xns

n
− vk1

k2 + k1
s

∣∣∣∣ =
∣∣∣∣
(
Xns

ns
− vk1

k2 + k1

)
s

∣∣∣∣ < Δ

t
s ≤ Δ,

or ns ≤ nΔ, in which case∣∣∣∣Xns

n
− vk1

k2 + k1
s

∣∣∣∣ = 1

n

∣∣∣∣Xns − vk1
k2 + k1

ns

∣∣∣∣ < M

n
< Δ,

implying that we have sup0≤s≤t

∣∣ 1
nXns − vk1/(k2 + k1)s

∣∣ < Δ whenever n > M/Δ.
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Once we rescale the position for the particle by 1/
√
n and time by 1/n, ξ still

changes at a much faster rate than the position of the particle X . The generator of
the rescaled centered process (Xn, ξn) defined as

Xn
t :=

√
n

(
Xnt

n
− k1v

k2 + k1
t

)
, ξnt := ξnt

is the closure of the operator

Ānf(x, ξ) =

(√
nσ(ξ) − k1v

k2 + k1

)
∂xf(x, ξ) + nλ(ξ)

(
f(x, s(ξ)) − f(x, ξ)

)
on f ∈ D(An) = C1,0

0 (R × {0, 1}). We will use the stochastic averaging theorem
(Theorem 2.1 of [25]) to show that the paths of the centered rescaled process converge
in distribution to paths of a Brownian motion with a diffusion coefficient equal to
2k2k1/(k2 + k3)

3v2.
Let h(ξ) be the function

h(ξ) = v
k2k1

(k2 + k1)3
1

λ(ξ)
= v

k2k1
(k2 + k1)3

1

k2ξ + k1(1 − ξ)
.

Then h(1) = vk1/(k2 + k1)
2, h(0) = −vk2/(k2 + k1)

2 imply that h(s(1)) − h(1) =
−v/(k2 + k1), h(s(0))− h(0) = v/(k2 + k1), which in turn imply that λ(1)

(
h(s(1))−

h(1)
)
= −vk2/(k2 + k1), λ(0)

(
h(s(0))− h(0)

)
= vk1/(k2 + k1), so that for ξ ∈ {0, 1}

λ(ξ)
(
h(s(ξ))− h(ξ)

)
= −

(
vξ − v

k1
k2 + k1

)
.

Now, for any f ∈ C2
0(R) define a sequence of functions fn ∈ C1,0

0 (R× {0, 1}) by

fn(x, ξ) = f(x) +
1√
n
h(ξ)∂xf(x).

Then fn → f as n → ∞ and

Ānfn(x, ξ) =
√
n

(
vξ − v

k1
k2 + k1

)
∂xf(x) +

(
vξ − v

k1
k2 + k1

)
h(ξ)∂2

xf(x)

+
√
nλ(ξ)

(
h(s(ξ))− h(ξ)

)
∂xf(x)

=

(
vξ − v

k1
k2 + k1

)
h(ξ)∂2

xf(x) = Āf(x),

where Ā is defined on D(Ā) = C2
0(R) by

Āf(x) =
k2k1v

2

(k2 + k1)3
∂2
xf(x).

Define a sequence of processes

εf,nt =
1√
n
h(ξnt )∂xf(X

n
t ) = fn(Xn

t , ξ
n
t )− f(Xn

t ).

Then our earlier calculation implies that for any f ∈ D(Ā)

f(Xn
t )−

∫ t

0

Āf(Xn
s )ds+ εf,nt = fn(Xn

t , ξ
n
t )−

∫ t

0

Anf(Xn
s , ξ

n
s )ds
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is a sequence of martingales. Since f ∈ C2
0(R), ξ

n
t ∈ {0, 1}, it is clear that

sup
n

E

[∫ t

0

∣∣Āf(Xn
s )
∣∣2ds] < ∞ and E

[
sup
s≤t

∣∣εf,ns

∣∣] −→
n→∞ 0.

In order to apply Theorem 2.1 of [25] on stochastic averaging it is left only to show
that the processXn satisfies the compact containment condition; that is, for any t > 0
and Δ > 0 there exists a compact set K ⊂ R such that

inf
n

P{Xn
s ∈ K ∀s ≤ t} ≥ 1−Δ.

This follows from the fact that Xn
t + h(ξnt )/

√
n is a sequence of martingales (let

f(x) = x) with mean

E

[
Xn

t +
h(ξnt )√

n

]
= Xn

0 +
h(ξn0 )√

n
=

k2k1
(k2 + k1)3

v2√
n

and second moment (let f(x) = x2)

E

[(
Xn

t +
h(ξnt )√

n

)2
]
=

k2k1
(k2 + k1)3

v22t+
E[h(ξnt )]

n
.

So, by Doob’s inequality,

P

{
sup
s≤t

∣∣∣∣Xn
s +

h(ξnt )√
n

∣∣∣∣ ≥ C

}
≤ 4

C2
E

[(
Xn

t +
h(ξnt )√

n

)2
]

=
4

C2

(
k2k1

(k2 + k1)3
v22t+

E[h(ξnt )]

n

)
.

Noting that hmin := vmin(k2, k1)/(k2 + k1)
2 ≤ h ≤ hmax := vmax(k2, k1)/(k2 + k1)

2

and choosing C (given on t and Δ) so that the right-hand side of the inequality
with n = 1 is less than Δ shows that with K = [−C − hmax, C − hmin] the compact
containment condition holds for (Xn)n≥1.

Now Theorem 2.1 of [25] implies that Xn ⇒ W in distribution on the Skorkhod
space of continuous functions, whereW is a process with generator Ā and consequently
has the same distribution as

√
2k2k1v2/(k2 + k1)3B, where B is a standard Brownian

motion.

3.3. Connection to PDE models. In order to demonstrate the connection
between our model and the PDEs seen in [35], [34], [15], consider the process (X, ξ)
of the particle following the piecewise-linear Markov process, and for any x ≥ 0, t ≥ 0
let

q(x, t) = P{Xt ∈ dx, ξt = 1}/dx, p(x, t) = P{Xt ∈ dx, ξt = 0}/dx
denote the probability densities of the particle’s location x on- and off-transport,
respectively, over time. Kolmogorov forward equations for (X, ξ) imply that q and p
satisfy the system of PDEs

∂tq(x, t) + v∂xq(x, t) = −k2q(x, t) + k1p(x, t),(3.1)

∂tp(x, t) = k2q(x, t) − k1p(x, t).(3.2)
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When k2 = 0 = k1, the limiting PDE is simple linear transport: (∂t+v∂x)q(x, t) =
0. The initial condition q(x, 0) = δ0(x) corresponds to the density of a single particle
at the origin at t = 0. The time evolution via simple linear transport is a translation
of the delta function, while the time evolution via (3.1) and (3.2) will have a spreading
profile. This is clear from the macroscopic limits of (Xδ, ξδ) as δ → 0. When k2 =
k1 = 0, the particle never switches off from traveling on transport at speed v and is
deterministic, as seen in Proposition 3.1. When k2, k1 > 0 the particle follows a truly
stochastic process (X, ξ) with a nonzero variance, as seen in Propositions 3.3 and 3.4.

In the experiments described in the introduction one sees “approximate” traveling
waves of radioactivity in the axons in the sense that there is a slowly spreading
wavefront moving at constant velocity away from the cell body. Equations (3.1) and
(3.2) are linear and do not have solutions that are bounded traveling waves. It was
shown by a perturbation theory argument in [35], [34] that as ε → 0 the solutions of

ε(∂t + v∂x)q
ε(x, t) = −k2q

ε(x, t) + k1p
ε(x, t),(3.3)

ε∂tp
ε(x, t) = k2q

ε(x, t) − k1p
ε(x, t),(3.4)

subject to qε(0, t) = q0, are to leading order

qε(x, t) = c1H

(
x− μt

ε1/2
, t

)
, pε(x, t) = c2H

(
x− μt

ε1/2
, t

)
,

where H satisfies the heat equation

∂sH(y, s) =
σ2

2
∂yyH(y, s), H(y, 0) = χ(−∞,0),(3.5)

μ =
k2v

k2 + k1
, σ2 =

2k2k1v
2

(k2 + k1)3
, c1 =

k1
k2 + k1

, c2 =
k2

k2 + k1
.

This asymptotic form is valid for small ε, that is, for large k2 and k1. However, if we
set q(x, t) = qε(xε ,

t
ε ) and p(x, t) = pε(xε ,

t
ε ), then q and p satisfy (3.3) and (3.4), so

the solutions of (3.1) and (3.2) behave like approximate traveling waves for large t and
large x whether or not k2 and k1 are large. These results have been proven rigorously
by Friedman and coworkers [13], [14], [15], [16].

To see that our Proposition 3.4 provides another rigorous proof of these properties,
albeit using stochastic methods, consider the process (εX·/ε, ξ·/ε) (that is, ( 1nXn·, ξn·)
with n = 1/ε), and let

qε(x, t) = P
{
εXt/ε ∈ dx, ξt/ε = 1

}
/dx, pε(x, t) = P

{
εXt/ε ∈ dx, ξt/ε = 0

}
/dx

be the probability densities for this process. The generator of this process is An

(n = 1/ε), so the Kolmogorov forward equations imply that qε and pε satisfy the
system of PDEs (3.3) and (3.4). Our result from Proposition 3.4 states that

P
{
εXt/ε ∈ dx

}
/dx ≈ H

(
x− μt

ε1/2
, t

)

for small ε > 0, where H satisfies (3.5). Hence, qε+pε ≈ H(x−μt
ε1/2

, t), and P
{
ξt/ε = 1

}
≈ k1/(k2 + k1), P

{
ξt/ε = 0

} ≈ k2/(k2 + k1) gives the result that qε(x, t) and pε(x, t)

are well approximated by k1

k2+k1
H(x−μt

ε1/2
, t) and k2

k2+k1
H(x−μt

ε1/2
, t).

D
ow

nl
oa

de
d 

02
/0

5/
13

 to
 1

32
.2

05
.7

.5
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1544 L. POPOVIC, S. A. MCKINLEY, AND M. C. REED

4. Dynamics from the spatial system perspective.

4.1. The spatial system in equilibrium. We are now ready to characterize
the steady state dynamics induced by continually adding particles from the nucleus
and removing them when they reach the distal end of the cell.

Proposition 4.1. Let ({(Qi(t), Pi(t)), i = 1, . . . , N})t≥0 be the number of parti-
cles in the axonal transport system with compartments of size δ, on- and off-transport,
respectively. Suppose the rate of production of particles from the source is rq0 = vρ0.
Then this Markov chain has the product-form stationary distribution

(Qi, Pi) ∼ Pois(q0)⊗ Pois

(
k2q0
k1

)
,

where all {(Qi, Pi), i = 1, . . . , N} are mutually independent.
Proof. Since the production rate is rq0, the generator of the process (Q1, P1) is

Aq0f(q, p) = [f(q + 1, p)− f(q, p)]rq0 + [f(q − 1, p)− f(q, p)]rq

+ [f(q − 1, p+ 1)− f(q, p)]k2q + [f(q + 1, p− 1)− f(q, p)]k1p.

If we use f(q, p) = Q1(t) and f(q, p) = P1(t) and take expectations, we get a system
of ODEs governing the change in E[Q1],E[P1] over time,

dE[Q1](t)

dt
= rq0 − rE[Q1(t)]− k2E[Q1(t)] + k1E[P1(t)],

dE[P1](t)

dt
= k2E[Q1(t)]− k1E[P1(t)],

indicating that in equilibrium in the first section the mean numbers of on-transport
particles and off-transport particles are E[Q1] = q0 and E[P1] = E[Q1]

k2

k1
= q0k2/k1,

respectively. Let πq0(q, p) = πλQ(q)⊗πλP (p) be a product of two independent Poisson
distributions with rates λQ = q0 and λP = q0k2/k1, respectively. To show that
πq0(q, p) is a stationary distribution for the process (Q1, P1), we need to check that

∞∑
q=0

∞∑
p=0

Aq0f(q, p)πq0(q, p) = 0

for any choice of function f ∈ D(Aq0 ):

∞∑
q=0

∞∑
p=0

Aq0f(q, p)e
−(λQ+λP )

λq
Q

q!

λp
P

p!

= e−(λQ+λP )
∞∑
q=0

∞∑
p=0

λq
Q

q!

λp
P

p!

(
[f(q + 1, p)− f(q, p)]rq0 + [f(q − 1, p)− f(q, p)]rq

+ [f(q − 1, p+ 1)− f(q, p)]k2q + [f(q + 1, p− 1)− f(q, p)]k1p
)
.
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AXONAL TRANSPORT 1545

In the two sums the factor multiplying f(q, p) for any (q, p) ∈ N×N comes only from
terms involving {q − 1, q, q + 1} and {p− 1, p, p+ 1} and equals e−(λQ+λP ) times

λq−1
Q

(q − 1)!

λp
P

p!
rq0 −

λq
Q

q!

λp
P

p!
rq0 +

λq+1
Q

(q + 1)!

λp
P

p!
r(q + 1)− λq

Q

q!

λp
P

p!
rq

+
λq+1
Q

(q + 1)!

λp−1
P

(p− 1)!
k2(q + 1)− λq

Q

q!

λp
P

p!
k2q

+
λq−1
Q

(q − 1)!

λp+1
P

(p+ 1)!
k1(p+ 1)− λq

Q

q!

λp
P

p!
k1p

=
λq
Q

q!

λp
P

p!

(
q

λQ
rq0 − rq0 +

λQ

q + 1
r(q + 1)− rq +

λQ

q + 1

p

λP
k2(q + 1)

− k2q +
q

λQ

λP

p+ 1
k1(p+ 1)− k1p

)

=
λq
Q

q!

λp
P

p!

(
q

q0
rq0 − rq0 + q0r − rq

)
= 0

since λQ = q0 and λP /λQ = k2/k1.
Thus, in equilibrium the input rate for (Q2, P2), which is rQ1, has a Poisson

distribution with mean rq0 and is independent of P1. Let πq0(q1)⊗πλQ(q2)⊗πλP (p2)
be a product of three Poisson distributions with rates q0, λQ = q0, and λP = q0k2/k1,
respectively. To show that this is a stationary distribution for the process (Q1, Q2, P2)
we need to check that

∞∑
q1=0

∞∑
q2=0

∞∑
p2=0

Aq1f(q2, p2)πq0(q1)πq1 (q2, p2) = 0

for any choice of function f ∈ D(Aq1 ). For each fixed value q1, according to our
previous calculation the inner two sums give 0, so the whole sum is 0.

Thus, in equilibrium, (Q2, P2) have the distribution πλQ(q)⊗πλP (p) with λQ = q0,
λP = q0k2/k1 as well, and are independent of (Q1, P1). It follows by induction that
the stationary distributions for {(Qi, Pi)} are i.i.d. as πλQ(q)⊗πλP (p), with λQ = q0,
λP = q0k2/k1. This is also an example of a clustering process satisfying the detailed
balance conditions with linear rates discussed in section 8.2 of [24].

We point out that the mean number of particles both on- and off-transport is
(1+ k2

k1
)q0 = (1+ k2

k1
)ρ0δ, scaling with the size of a compartment. To obtain the mean

number of particles per unit length we add particles in ≈ 1/δ compartments, and the
mean number of particles per unit length is (1 + k2

k1
)ρ0 independent of the choice of

compartment size.
One immediate consequence is the analogous result for the number of particles

in the stochastic noncompartmental model at any location along the axon. Namely,
suppose the particles move according to the piecewise-linear Markov process (X, ξ)
with a Poisson rate ρ0 influx of new particles at location 0. Then, at any location
0 < x < L along the axon, the numbers of particles (Q(x,x+dx), P(x,x+dx)) on- and off-

transport, respectively, have the stationary distribution Pois(ρ0dx) ⊗ Pois(k2

k1
ρ0dx),

where for any x1, . . . , xk ∈ (0, L), {Qxi}1≤i≤k and {Pxi}1≤i≤k are mutually indepen-
dent. We note that this result would not have been obvious without going through
the compartmental model first, yet its consequences for prediction and analysis of the
long-term stochastic behavior of the system are quite powerful.
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1546 L. POPOVIC, S. A. MCKINLEY, AND M. C. REED

4.2. Homogeneity of the axons at equilibrium. Recall that δ = 10nm,
roughly the step size of motor proteins, and that axons can be up to one meter in
length. Thus we are interested in phenomena on all the length scales 10νδ, where
ν = 0, 1, 2, . . . , 8. Let Δ = 10νδ; we want to determine how similar different segments
of the axon of size Δ are. Let QΔ and PΔ denote the numbers of on-track and off-track
particles in a segment of length Δ.

In equilibrium, QΔ and PΔ are both sums of 10ν independent Poisson random
variables with parameters λQ = q0 and λP = k2

k1
q0, respectively. Therefore, the distri-

butions of QΔ and PΔ are Poisson with parameters 10νλQ and 10νλP , respectively.
The mean and the variance of the number of particles in the segment of length Δ are
10ν(λQ + λP ). To see how homogeneous different slices of length Δ are, we consider
the coefficient of variation, cΔ, which is the standard deviation divided by the mean:

cΔ =
1√

(λQ + λP )10ν
=

1√
(1 + k2/k1)q010ν

.

As indicated in section 2, q0 is in the range 0.25 to 2.5 in different axons. For
illustrative purposes here, we will assume q0 = 1. Since k2/k1 = 3, we see that the

scale-dependent coefficient of variation cΔ = 1/(2
√
108Δ). Therefore, at the ten nano-

meter scale the coefficient of variation is simply 1/2. At the micron scale cΔ = 1/20,
and at the millimeter scale cΔ = 0.5 × 10−5/2. The cutoff between “high variance”
and “low variance” distributions is usually considered to be when the coefficient of
variation is near 1, so by this standard the axon is extremely homogeneous in its
length at large scales.

4.3. Balance between efficient transport and targeted delivery. The pre-
ceding characterization of the transport apparatus enables us to address questions
concerning whole cell function. One core issue is that intracellular transport must
simultaneously accommodate two functional demands: some material, such as the
enzymes used to construct neurotransmitters, must be transported from the soma to
the axon terminal in a timely manner; whereas other cargo, such as sodium channels,
need to be delivered to unspecified locations as needs arise throughout the length of
the cell. The tradeoff between these two goals is clear. If a typical vesicle spends the
vast majority of its time in transport mode, the mean velocity will be close to the
mean on-transport velocity, but any needs that arise in the central part of the cell
will be neglected. On the other hand, if a typical vesicle spends too much time off
transport, presumably available for use if needed locally, then it will take substantially
longer to traverse the entire cell.

Recently Bressloff and Newby [30], [31] modeled particles that are created near
the nucleus that then undergo intermittent search (being in search mode while off-
transport and not in search mode when on-transport) for a target hidden somewhere
along the axon. Their model is a noncompartmental individual particle model with
the additional feature that vesicles can move backward as well as forward. They
compute the probability that the particle is successful and conditioning on success,
the mean first hitting time. With our systemwide model we can accommodate the
observation that if a given vesicle misses the target, another vesicle with similar cargo
will pass by before too long. We will assess this hitting time under two assumptions
about the density of relevant material. Our standing assumption q0 ∼ 1 is appropriate
for types of cargo that are found densely throughout the cell. In this setting, the wait
time is essentially just the time it takes for one of several nearby vesicles to unbind
from transport in the target region. A more interesting case is a setting where the
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needed cargo is sparsely distributed, say, q0 ∼ 10−3. In this setting, if the first cargo
to reach the target region fails to unbind, there will be significant time before the
next arrival. As we will see, we can still assess the trade-off intrinsic between risking
a target miss and diminishing the time of the next arrival.

To make the discussion concrete we define a target region Rn = {i∗+1, . . . , i∗+n},
where i∗ ∈ 1, . . . , N − n. At time zero, we take the system {Qi(0), Pi(0)} to be
drawn from the stationary distribution described by Proposition 4.1 conditioned on
the event that for all i ∈ Rn, Qi(0) = Pi(0) = 0. We introduce the hitting time Hn :=
inf{t > 0 :

∑
i∈Rn

Pi(t) > 0}, which marks the first time a particle is off-transport
while in Rn. Since computing the mean of Hn is analytically intractable, we introduce
another hitting time H ′

n, stochastically dominating Hn, that nevertheless reflects the
essential trade-off between maximizing mean velocity and making detachment from
transport likely in the target region.

Let I∗ := {i ∈ {1, . . . , i∗} | Qi(0)+Pi(0) > 0} be the set of all nonempty sections
of the cell at time 0. Among the particles in these sections some will be “successful”
in that they will detach from transport in the target region, while others will be
unsuccessful. Labeling each particle in these terms, we decompose I0 into locations
with successful particles Is∗ and unsuccessful particles Iu∗ . We are interested in the time
H ′

n at which the rightmost successful particle, that is, a particle starting from position
im = max{Is∗}, detaches while in Rn. If S = 0, then we define im = max{∅} := 0.
For the position of this particle we use the notation (Xδ

t )t≥0 from section 3, where
Xδ

0 = δim, Xδ
t ∈ {δim, . . . , δN}, together with the indicator (ξδt )t≥0, ξ

δ
t ∈ {0, 1}, of

whether the particle is on- or off-transport, respectively. Let

H ′
n := inf{t > 0 : (Xδ

t , ξ
δ
t ) = (δ(i∗ + 1), 1)}.

Note that H ′
n = inf{t > 0 : Xδ

t ∈ δRn}, since particles cannot skip sections and
always enter a section on transport. If we were to analogously define a sequence of
times {Hi

n}i∈Is∗ , where for each i ∈ Is∗ , H
i
n = inf{t > 0 : Xδ

t ∈ δRn} with Xδ
0 = δi

and ξδ0 ∈ {0, 1}, then the exact first hitting time of the target region will satisfy
Hn = min{Hi

n : i ∈ Is∗}. Hence, clearly Hn ≤ Him
n ≡ H ′

n.
Since the exact distribution ofHi

n is complicated, E[Hn] is analytically intractable,
and instead we focus on finding a simple expression for E[H ′

n]. Our point is that, in the
sparse material limit (q0 small), the rightmost particle becomes increasingly likely to
be the first successful particle to detach in the target region, and Hn approaches H ′

n.
The computation of E[H ′

n] requires computing the time it takes a particle to travel
a certain axonal distance, given by the following.

Lemma 4.2. Let the initial position of the particle be (Xδ
0 , ξ

δ
0) = (0, 1), and let

L∗ ∈ {1, . . . , L} be given, where L is the total length of the axon. Then the time
TL∗ = inf{t > 0 : Xδ

t = L∗} satisfies

E[TL∗ ] =
L∗(k2 + k1)

vk1
.

Proof. Since (Xδ
t , ξ

δ
t )t≥0 is a Markov process with generator

Aδf(x, ξ) = rξ
[
f(x+ δ, ξ)− f(x, ξ)

]
+ k2ξ

[
f(x, ξ − 1)− f(x, ξ)

]
+ k1(1 − ξ)

[
f(x, ξ + 1)− f(x, ξ)

]
,

it follows that M1
t := Xδ

t − rδ
∫ t

0
ξδsds and M2

t := ξδt +
∫ t

0
k2ξ

δ
sds−

∫ t

0
k1(1− ξδs )ds are

both martingales. Since both M1 and M2 have bounded increments and E[TL∗ ] < ∞,
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the optional stopping theorem implies that

0 = E
[
M1

0

]
= E

[
M1

TL∗

]
= L∗ − vE

[∫ TL∗

0

ξδsds

]
⇒ E

[∫ TL∗

0

ξδsds

]
= L∗/v

and

1 = E
[
M2

0

]
= E

[
M2

TL∗

]
= 1− k1E[TL∗ ] + (k2 + k1)E

[∫ TL∗

0

ξδsds

]
,

which implies

E[TL∗ ] =
k2 + k1

k1
E

[∫ TL∗

0

ξδsds

]
,

and our claim follows.
We also note that the same computation holds for the mean time a particle in

the stochastic noncompartmental model (Xt, ξt)t≥0 takes to reach a distance L∗, as
the two martingales used in the proof depend only on v and not on δ.

We next compute the hitting time H ′
n of a particle started at location im ∈ I∗.

Lemma 4.3. Let the system {(Qi(0), Pi(0)), i = 1, . . . , N} have the stationary
distribution given by Proposition 4.1 conditional on Qi(0) = Pi(0) = 0 for all i ∈ Rn.
Then

E[H ′
n] = (1− e−λn)

[
1

rq0pn
+

k2
k1(k2 + k1)

]
+

1

k2pn

[
1−

(
r

k2 + r

)n (
1 +

nk2
k2 + r

)]
,

where pn = 1− ( r
k2+r )

n and λn = k2+k1

k1
q0i∗pn.

Proof. The proof of Proposition 4.1 shows that conditioning on the values of
Pi(0), i ∈ Rn, does not affect the law of {(Qi(t), Pi(t)), i ≤ i∗}; hence for any t ≥ 0,
they form two mutually independent sequences of Pois(q0) and Pois(k2q0

k1
) random

variables.
Let S denote the number of successful particles between sites 0 and i∗ at time

zero. The total of number of particles at time 0 at these sites that are either on-
or off-transport is distributed as a Pois(k2+k1

k1
q0i∗) variable. We next compute the

probability pn that any particle once it reached the target region is “successful” in
detaching there. This probability can be written pn :=

∑n
i=1 p(i), where p(i) is the

probability it first detaches at location i∗+i. Since p(i) = ( r
k2+r )

i−1 k2

k2+r is the chance

a particle gets off-transport in the ith compartment, pn =
∑n

i=1 p(i) = 1 − ( r
k2+r )

n.
The probability that a particle is successful does not depend on its location at time 0
or whether it was on- or off-transport at that time. Hence, S is distributed as a
Pois(k2+k1

k1
q0i∗pn) variable, and conditioned on the value S, the set of locations of the

particles at time 0 is distributed as a set of S draws from the uniform distribution
on {1, . . . , i∗}. Since im is the maximum of S samples from a Uniform{1, . . . , i∗}
distribution, we have E[im|S] = i∗ − 1

iS∗

∑i∗−1
x=1 xS ≈ i∗ S

S+1 .

We now decompose H ′
n = H ′

e,n +H ′
o,n, where we let H ′

e,n be the time it takes a
successful particle initially at location im to enter the region Rn, and Ho,n is the time
it takes any successful particle after it enters the region to get off-transport. Thus,
E[H ′

n] = E
[
H ′

e,n

]
+ E

[
H ′

o,n

]
.
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AXONAL TRANSPORT 1549

If a successful particle starts at location Xδ
0 = im ∈ {0, . . . , i∗} on transport

ξδ0 = 1, then the time it takes to enter the region Rn is by Lemma 4.2

E
[
H ′

e,n|(Xδ
0 , ξ

δ
0) = (im, 1)

]
=

(i∗ − im)δ(k2 + k1)

vk1
.

If it starts at location Xδ
0 = im ∈ {1, . . . , i∗} off transport ξδ0 = 1, then it takes an

additional exponential time with mean 1/k1 for it to get back on transport at the
same location, so E

[
H ′

e,n|(Xδ
0 , ξ

δ
0) = (im, 0)

]
= E

[
H ′

e,n|(Xδ
0 , ξ

δ
0) = (im, 1)

]
+ 1

k1
, and

since we assume new particles always enter the system on-transport,

E
[
H ′

e,n|im
]
=

(i∗ − im)δ(k2 + k1)

vk1
+

1

k1
1im>0.

Since E[im|S] = i∗ S
S+1 , P{im > 0} = P{S > 0}, we get that

E
[
H ′

e,n

]
= E

[
1

S + 1

]
i∗(k2 + k1)

rk1
+

k2
k1(k2 + k1)

P{S > 0}

with S ∼ Pois(λn), λn = k2+k1

k1
q0i∗pn. Since E[S] = 1−e−λn

λn
, P{S > 0} = 1 − e−λn ,

we get

E
[
H ′

e,n

]
= (1 − e−λn)

(
1

rq0pn
+

k2
k1(k2 + k1)

)
.

To calculate E
[
H ′

o,n

]
note that if a particle first gets off-transport in the ith

compartment, then the time of its travel until this point is a sum of i i.i.d. exponential
random variables with parameter k2 + r. The probability a successful particle first

gets off-transport in the ith compartment is p(i)
pn

. Hence, the time a successful particle
takes to get off-transport once it enters the region R has the mean

E
[
H ′

o,n

]
=

n∑
i=1

p(i)

pn

i

k2 + r
=

1

k2pn

[
1−

(
r

k2 + r

)n (
1 +

nk2
k2 + r

)]
,

and our claim follows.
To complete our analysis, we wish to characterize this result in terms of length

along the axon and independent of the stepping size δ. To this end, we fix a length �,
and for a given compartment size �, we let n = ��/δ�, and for the start of the region
we let i∗ = ��∗/δ�. As such, as δ → 0 the limiting region becomes R
 = (�∗, �∗ + �).
Then, under the assumption that q0/δ → ρ0 we have

pn → p
 = 1− e−
k2/v, λn → λ
 =
k2 + k1

k1
ρ0�∗p
,

and E[H ′
n] → E[H ′], where

(4.1) E[H ′] =
(
1− e−λ�

) [ 1

vρ0p

+

k2
k1(k2 + k1)

]
+

1

k2p


[
1− e−

�k2
v

(
1 +

�k2
v

)]
.

It remains to interpret this result with respect to the parameter choices we have
made. First, we must set a value for the size � of the target region. For this purpose
we note that the typical size of a node of Ranvier—a gap in the myelin sheath of a

D
ow

nl
oa

de
d 

02
/0

5/
13

 to
 1

32
.2

05
.7

.5
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1550 L. POPOVIC, S. A. MCKINLEY, AND M. C. REED

myelinated axon where sodium channels are concentrated in the cell membrane—is
approximately one micron.1

As seen in the preceding proof there are three contributions to E[H ′], and we next
analyze them in terms of their dominance for the overall value. We begin with the
contribution from the last term, which is the time it takes for a successful particle to
detach once it has reached the target region. By our choice of �, the recurring ratio
�/v is one. Along with the earlier assumption that k2 = 1, the entire term simplifies
to (e−2)/(e−1) = 0.4 s. The multiplicative factor 1−e−λ� preceding the first term of
(4.1) results from a boundary effect: when �∗ is very close to zero, it is very unlikely
there are any particles already in the system between the soma and the target region.
When the target region is in the middle of the axon, this contribution from particles
in that section of the axon at time 0 is significant.

When q0 ∼ 1 as assumed earlier, then ρ0 = q0/δ ∼ 108. Then if �∗ > 10−8, which
corresponds to the target region being just one motor step down the length of the
axon, we have ρ0�∗ ∼ 1 and λ
 > 2.3, so 1 − e−λ� > 0.9. Looking at the first term
inside the parenthesis, we note that vρ0 ∼ 102, while p
 = 1 − exp(−�k2/v) ≈ 0.6 is
the probability that any given vesicle will be successful in detaching from transport in
the target region, so 1/(vρ0p
) ∼ 10−2. Meanwhile, the term k2/(k1(k2 + k1)), which
is the expected time to bind to transport if a successful particle happens to be off
transport at time 0, is 1/4 for the assumed values of k2 and k1. Therefore, under the
q0 ∼ 1 assumption, both this and the final term contribute significantly to the hitting
time.

However, in the sparse material regime, say, q0 ∼ 10−3, we have then ρ0 ∼ 105,
and the factor 1 − e−λ� > 0.9 when �∗ > 10−5, that is, if the target region is at
least 1/100, or at least 1000 segments, down the length of a 10−3m axon. However,
now the rate limiting factor is the wait time for the first successful vesicle to arrive
in the target region, which is captured by the term 1/vρ0p. The product vρ0 ≈ 0.1
measures the average rate at which new particles should arrive, and together with
the probability of success p
 ≈ 0.6, we now have 1/vρ0p
 ≈ 16s. So, in the sparse
material regime the first summand in E[H ′] giving the mean time for arrival of the
particles to the target region dominates.

It is interesting to consider what happens to the arrival rate term under pertur-
bations of the various parameters. In particular, we draw the reader’s attention to
changes in v. When viewing intermittent search in terms of a single particle, the
probability of finding the target is strictly decreasing in v. Higher velocity seems to
be the enemy of finding the target. Indeed, from a system point of view, this im-
plies that the system will require more trials before a successful particle arrives in
the target region. What (4.1) gives us is the ability to assess how much more quickly
the trials will happen. In fact, the function v(1 − exp(−�k2/v)) is increasing in v.
Therefore, the entire expected wait time E[H ′] is actually decreasing in v. That is to
say, while the particles are less likely to succeed, they will be arriving rapidly enough
to counterbalance the lost time. We believe that this kind of quantitative analysis
will prove fruitful in future study when coupled with more details of the biology of
deposition of materials in the cell membrane.

1We do not wish to claim that this is a complete model for deposition of sodium channels in
nodes of Ranvier, as the particulars of the biology—which may include factors like local signals that
encourage motors to detach from microtubules near the nodes—are not fully understood. We merely
wish to use the size of the nodes to fix our intuition about the size of a target to other important
length scales, such as that of microtubules, which are also a micron in length.
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4.4. Approaching equilibrium. We have seen above that the axon is very
homogeneous at stochastic equilibrium on a space scale down to micrometers. One
of the beautiful properties of transport with reversible binding is that if it is locally
out of equilibrium, the on-off dynamics can return the system to equilibrium on a
much faster time scale than waiting for new material to arrive from the nucleus.
Furthermore, as discussed in [44], one of the key goals of biophysics investigation is
the discovery of behaviors for which biochemical regulation is not necessary. This is
of fundamental importance to the biological function of the system because it means
that the axon will automatically “repair” itself without central control of the repair
process.

How good is this mechanism? If a segment of the axon is far away from equi-
librium, how long does it take to get back close to equilibrium? To investigate this
question, we imagine that the axon is at stochastic equilibrium except for some seg-
ment R, where the total number of particles on- and off-transport, Qi(0)+Pi(0) = 0,
for all i ∈ R, is zero at time 0. Let a and ε be given small numbers and suppose that
λ∞ is the mean vector for (Qi, Pi) at stochastic equilibrium. We want to compute
(an upper bound for) the time t∗ so that

P{|(Qi(t
∗), Pi(t

∗))− λ∞| ≥ a|λ∞| ∀i ∈ R} ≤ ε,

that is, the probability that (Qi, Pi) for all i ∈ R is significantly different from λ∞ is
very small. In the applications below we will choose a = 0.1 and ε = 0.05, and we will
see that a 10 micron segment can recover in about 10 seconds, while a 1 millimeter
segment will take about 1000 seconds or 15 minutes to recover. We study this question
first for a single location R = {i} and then use the estimates derived to scale the results
to segments of any length.

Proposition 4.4. Let (Qi(0), Pi(0)) = (0, 0), and let the constants a > 0 and
ε ∈ (0, 1) satisfy the relationship a2ε|λ∞| > 1, where λ∞ = q0(1,

k2

k1
) is the equilibrium

vector of (Qi, Pi). Then there exists t∗ > 0 such that for all t ≥ t∗,

P{|(Qi(t), Pi(t))− λ∞| ≥ a|λ∞|} ≤ ε.

In fact, the choice t∗ = α−1 ln
( √

p|λ∞|
a
√

ε|λ∞|−1

)
is sufficient, where

α :=
1

2

(
k2 + k1 + r −

√
(k2 + k1 + r)2 − 4k1r

)
.

We note that given a particular choice of a and ε, the condition a2ε|λ∞| > 1
guarantees that there are “enough” particles.

Proof. Note that for any given β ∈ (0, 1), we may choose t∗ > 0 such that for all
t ≥ t∗, the vector of means λ(t) := E[(Qi(t), Pi(t))] satisfies |λ(t) − λ∞| ≤ aβ|λ∞|.
Then

P{|(Qi(t), Pi(t))− λ∞| ≥ a|λ∞|} ≤ P{|(Qi(t), Pi(t)) − λ(t)|+ |λ(t)− λ∞| ≥ a|λ∞|}
≤ P{|(Qi(t), Pi(t)) − λ(t)| ≥ a(1− β)|λ∞|}.

Applying Chebyshev’s inequality and observing that the variance of a Poisson random
variable is equal to its mean, we conclude that

P{|(Qi(t), Pi(t))− λ∞| ≥ a|λ∞|} ≤ Var[|(Qi(t), Pi(t))|]
a2(1− β)2|λ∞|2 =

|λ(t)|
a2(1− β)2|λ∞|2 .
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Since the initial conditions for both Pi andQi are less than their respective equilibrium
values, each are monotonically increasing functions, and the above reduces to

P{|(Qi(t), Pi(t)) − λ∞| ≥ a|λ∞|} ≤ 1

a2(1− β)2|λ∞|
for all t > t∗. In order to satisfy the requirement that the right-hand side must be less
than ε, we solve for β and find β = 1− (a

√
ε|λ∞|)−1 provided that a

√
ε|λ∞| > 1.

It remains to study the convergence of the mean and the appropriate choice of t∗.
The dynamics of the mean vector λ(t) are given by the ODE

(4.2)
d

dt
λ(t) = −A1λ(t) + q0re1,

where e1 is the unit vector (1, 0) and A1 =
(
k2+r −k1

−k2 k1

)
.

The solution to (4.2) is λ(t) = λ∞+ e−A1t(λ(0)−λ∞), where λ∞ = q0rA
−1
1 e1 =

q0(1,
k2

k1
). This yields the estimate

|λ(t)− λ∞| ≤ ∣∣e−A1tλ∞
∣∣ ≤ e−αt|λ∞|,

where α is the smaller of the eigenvalues of A1. Noting that α > 0, t∗ may be chosen
so that e−αt∗ ≤ aβ; i.e., t∗ = α−1 ln(1/(aβ)) is an upper bound for the time to be
close to equilibrium with high probability.

In order to calculate return to equilibrium at various scales, we now suppose
that the whole axon is in statistical equilibrium except for a segment R of length
Δ = δ10ν, in which we will assume that there are no particles either on or off the
track. Proposition 4.4 covered the case ν = 0. We are interested in ν = 1, . . . , 8. We
imagine that the axon is broken up into 108−ν segments of length Δ. In this rescaled
system, the unbinding and binding rates per particle, k2 and k1, remain the same, as
well as the mean on-transport velocity v. In order to retain this mean velocity, the
rate of lateral stepping must be decreased to r̃ = r10−ν .

The ODE for the mean vector of the rescaled system is given by

(4.3)
d

dt
λ̃(t) = −Ã1λ̃(t) + q0re1

with Ã1 =
(
k2+r̃ −k1

−k2 k1

)
.

We note that the last term in (4.3) contains an r rather than an r̃. This is because
the input rate is unchanged while the exit rate is diminished. The resulting equilibrium
value is therefore rescaled as well: λ̃∞ = q0rÃ

−1
1 e1 = q0

r
r̃

(
1

k2/k1

)
= q010

ν
(

1
k2/k1

)
. Both

components of this vector are of order 10ν , as expected.
Using the parameters discussed in section 2, k2 = 1, k1 = 1

3 , v = 10−6m/s,
r = 102s−1. This implies r̃ = 102−νs−1. We choose the thresholds to be a = 0.1 and
ε = 0.05, so the constraint that a2ε|λ∞| > 1 requires that |λ∞| > 2 × 103. Since
0.25 ≤ q0 ≤ 2.5, this is indeed the case if ν > 3, i.e., if the segment has length greater
than 10 microns.

It follows from Proposition 4.4 that the time to equilibrium, t̃∗, is proportional
to α̃−1, where α̃ satisfies

α̃ =
1

2

(
k2 + k1 + r̃ −

√
(k2 + k1 + r̃)2 − 4k1r̃

)
=

2k1r̃

k2 + k1 + r̃ +
√
(k2 + k1 + r̃)2 − 4k1r̃

.
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For the given parameter values (with |λ∞| > 5 × 103, in particular), the constant
of proportionality ln

(√
ε|λ∞|/(a√ε|λ∞| − 1)

)
is contained in the interval (2.3, 2.5)

and does not have an impact on how the relaxation time scales with ν. In terms
of analyzing α̃, we note that k1r̃ is small compared to k2. To leading order, α̃ ∼
(k1r̃)/(k2 + k1 + r̃) ∼ 102−νs−1. It follows that t̃∗ ∼ 10ν−2s. Thus, for a 10 micron
segment (ν = 3) the time to recover is about 10 seconds, and for a 1 millimeter
segment (ν = 5) the time to recover is 1000 seconds or 15 minutes. The time to
recover depends, of course, on the parameter ε that represents what we mean by
“close.” We also note that one can compute various measures of time to recover using
the PDE models discussed in section 3.

5. Discussion. In this paper, we created a spatial Markov-chain model for
studying various aspects of fast axonal transport. Previous models that use PDEs
treat the velocity of transport as constant when particles are attached to the fast
transport system. Since it is known that transport along the microtubules is itself
stochastic, it is important to have a fully stochastic model. Our model allows us
to unify and extend previous work. In section 3.2 we show that from the particle
perspective as the compartment size δ tends to zero, our model converges in distribu-
tion on the Skorokhod space of cadlag functions to the piecewise-deterministic model
analyzed by Brooks [5]. Namely, we show that the paths of particles in our model
converge to those of particles in a stochastic noncompartmental model. The argu-
ment proceeds by an explicit computation of the finite dimensional distributions and
a tightness argument. In Proposition 3.4 we give a rigorous probabilistic proof of why
the paths of particles follow “approximate traveling waves” described by other authors
[35], [5], [13]. This proof is based on stochastic averaging arguments which show that
a functional central limit theorem holds on the space of continuous functions for the
paths of particles as the compartment size decreases. The diffusion of particles around
their mean position can consequently be approximately described jointly for all time
by a Brownian motion with the appropriate diffusion coefficient.

In section 2, we show how to use existing experimental data to identify (ranges
for) all the parameters of our model. In light of this, we can use the model to
investigate several important biological questions. These are based on describing the
spatial distribution of multiple particles in our model. In section 4.1 we derive the
stationary distribution for the number of particles in different compartments on- and
off-transport along the axon. This gives an explicit description of the stochasticity of
the system that is present even after a long time. In section 4.2 we derive estimates
for how homogeneous the axon is on different spatial scales. In section 4.3 we study
a question introduced by Bressloff by providing a stochastic quantity which describes
the balance the system needs to achieve between rapid transport that brings new
material quickly and efficient local search that improves time of delivery to a target.
Finally, in section 4.4, we use the model to calculate the length of time that it would
take for axonal segments of different lengths to recover to near stochastic equilibrium
after they have been depleted of vesicles.

In our stochastic compartmental model all event wait times are assumed to be
exponential random variables, but this is certainly a simplification. As an example,
the stepping process of kinesin is a well-studied though still not completely understood
phenomenon. Much work has focused on assessing the dependence of the mean rate of
translocation on both the load and the local concentration of adenosine triphosphate
(ATP) [43], [37]. Implicit in this analysis is the assumption of exponential wait times
with state dependent rate parameters. However, when fitting to data and matching
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dispersion information the authors in [12] found it necessary to generalize the wait
time distribution. This was followed by more detailed models for which it was shown
that load carrying could in fact regularize the stepping times of kinesin motors [36],
[8]. Generalizing wait times would significantly affect our results. Since the particle
position process is no longer Markov, we no longer have the direct connection to the
previous results stated in sections 3.1–3.3, nor can we use the stationary distribution
employed in section 4.1 and used for addressing the biological questions in sections
4.2–4.4. In light of the known need for generalized wait times in the stepping process,
it seems likely that detailed observation of the rebinding process will call for new
mathematical models as well. Recall that when a vesicle unbinds from a microtubule
it is unclear whether it typically rebinds to the same microtubule or if it explores the
region significantly via diffusion before finding a different microtubule to bind to. In
the latter case, a more appropriate model for rebinding time would be to solve some
kind of first passage time problem and use that distribution for the rebinding wait.

An important aspect of the biology of axonal transport is not included in the
model presented here, namely, the local deposition and eventual degradation of trans-
ported materials. For example, sodium channels and sodium pumps are synthesized
at the soma, transported down the axon, and deposited in the axonal membrane
either uniformly as in an unmyelinated axon or at the nodes of Ranvier in a myelin-
ated axon. Channels and pumps are proteins with half-lives on the order of days to
weeks. The present model can be extended to include a deposition compartment at
each location, and, clearly, the processes of deposition and subsequent degradation
will cause the mean number of particles both on- and off-transport to be monotone
decreasing as one moves down the axon. How inhomogeneous this makes the axon
will depend on the details of deposition and degradation rates. Our preliminary cal-
culations indicate that long axons, such as the meter-long axons in the human sciatic
nerve, would be quite inhomogeneous. This is an important biological issue because
it is controversial whether the machinery for protein synthesis (i.e., ribosomes) exist
in axons [41]. We have also not included retrograde transport or the fact that some
axons may have location-dependent unbinding rates [9]. All of these issues will be the
subject of future work.
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