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Abstract

Recently the correlation functions of the so–called Itzykson-Zuber/Harish-Chandra integrals were computed (by
one of the authors and collaborators) for all classical groups using an integration formula that relates integrals over
compact groups with respect to the Haar measure and Gaussian integrals over a maximal nilpotent Lie subalgebra
of their complexification. Since the integration formula a posteriori had the same form for the classical series, a
conjecture was formulated that such a formula should hold for arbitrary semisimple Lie groups. We prove this
conjecture using an abstract Lie–theoretic approach.

1 Introduction and setting

In random matrix theory [1, 2] a particularly important role is played by the so–called Itzykson–Zuber/Harish-
Chandra measure. Its integral is [3, 4]∫

U(N)

dUetr(XUY U†) = CN
det(exiyj )i,j

∆(X)∆(Y )
(1.1)

where dU is the Haar measure on U(N), X, Y are diagonal matrices and ∆(X) =
∏

i<j(xi − xj), with X =
diag(x1, . . . , xN ) and CN is some proportionality constant.

In a recent paper [5] integrals of invariant functions on such type measures were computed for all the classical
series (An, Bn, Cn, Dn) corresponding to unitary, orthogonal and symplectic ensembles, generalizing an earlier
result [6]. An outstanding conjecture was formulated in [5] relating certain spherical integrals

Conjecture 1 (Conjecture 1.1 in [5]) Let g a semisimple Lie algebra over C, h a Cartan subalgebra, K the
maximal compact group in exp(g), 〈, 〉 the Killling form and W the Weyl group. Let F (X, Y ) be a polynomial on
g × g invariant under diagonal adjoint action F (Adg(X), Adg(Y )) = F (X, Y ). Then the following identity holds
∀H,J ∈ h:∫

K

dkF (H,AdkJ)e−〈H,AdkJ〉 =
C

|W|
∑

w∈W

εw
e−〈H,Jw〉∏

α>0 α(H)α(J)

∫
n+

dNF (H + N, Jw + N†)e−〈N,N†〉 , (1.2)

where Jw stands for the action of the Weyl group on h, εw is the usual sign homomorphism and C is a suitable
constant depending only on the Lie algebra under consideration. (All the symbols will be defined more in detail
later)

1Work supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC).
2bertola@crm.umontreal.ca
3pratsferrer@crm.umontreal.ca

1



Such conjecture was verified a posteriori for all the classical series but the authors of [5] failed to provide a
general proof that would apply also to exceptional Lie algebras. This identity was the main initial step towards
an effective computation of all correlation functions for spherical integrals over the compact forms of the classical
groups, SU(N), SO(2n, R), SO(2n + 1, R), Sp(n, R). In this short note we provide a Lie–algebro–theoretical proof
of Conjecture 1 (Thm. 5.1) that does not rely on any specificity of the Lie algebra as long as it is semisimple and
provides a precise value for the proportionality constant C.

We will need to prove a slight generalization of Weyl–integration formula (which may well be known in the
literature but we could not find in any of the standard references). The proof of Conjecture 1 is contained in Thm.
5.1.

We will liberally use known facts about (semi)-simple Lie algebras, all of which can be found in standard
reference books like [7]. Let g be a complex semisimple Lie algebra over C, G the corresponding simply connected
group, G = exp(g). Let h = hC ⊂ g be a Cartan subalgebra (over C unless otherwise specified) and R ⊂ h∨C be the
set of roots. Let an ordering of the roots be chosen: it fixes the set of positive roots R+. The set of simple positive
roots with respect to this ordering will be denoted by Φ. We will use the Chevalley basis {Eα,Hα}α∈R (called root
vectors and coroots respectively) of g where Eα spans gα and the set Hα for α ∈ Φ spans h. Such a basis has the
properties [Eα, E−α] = Hα , [Hα, E±α] = ±2E±α , α ∈ R. Here and in the following we will use the notations

hR :=
∑
α∈Φ

R{Hα} , h := hC :=
∑
α∈Φ

C{Hα} , n+ =
∑
α>0

C{Eα} , b+ = hC + n+ . (1.3)

The compact form k ⊂ g will be chosen as the span of

k = ihR +
∑
α>0

R{Xα, Yα} , Xα := (Eα − E−α) , Yα := i(Eα + E−α) (1.4)

On each of the above Lie algebras we will use the Lebesgue measure such that the unit cube in the coordinates
given by the specified basis has unit volume.

We finally recall that any semisimple Lie algebra admits a decomposition g = k+a+n+ where k is a compact Lie
algebra, a ⊂ hR is Abelian. This decomposition subtends the Iwasawa decomposition of the Lie group G = K AN .

2 Schur decompositions

The first fact we need is a generalization of the Schur decomposition to arbitrary Lie algebras: Schur decomposition
is a widely known decomposition of matrices and states that any complex square matrix M can be written in the
form UTU† with U ∈ U(N) and T an upper semi-triangular matrix.

Theorem 2.1 Any ad-regular element M ∈ g is K–conjugate to an element in b+ = hC + n+.

Proof. It is known [7] that any ad-regular element in g is conjugate to an element in h, namely M = AdgH ∈ hC.
There are (generically) |W| such ways of representing M . Using the Iwasawa decomposition g = kan we have
immediately

M = Adk(H + (AdanH −H)) = AdkB (2.1)

with B = AdanH ∈ b+ and AdanH −H ∈ n+. Q.E.D.
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Since we will be concerned with integration formulæ, the above theorem suffices since the set of ad-regular
elements is a Zariski open set, dense in g: in particular nonregular elements are a set of Lebesgue measure zero.
However, the following more general theorem can also be proved (but we will not prove it here in the interest of
conciseness and also because it is completely irrelevant to our main purpose).

Theorem 2.2 Any element M ∈ g is conjugated by an element of the maximal compact subgroup K to an element
H + N with H ∈ h, N ∈ n+

3 Complex Weyl integration formula

The goal of this section is to write an integral formula for functions on g in terms of integrals on b and K.
Define

M := (K × b)/T (3.1)

where the action of the Cartan torus is t · (k, V ) := (kt−1, tV t−1), V ∈ b k ∈ K . We will write V = H + N with
iH ∈ hC and N ∈ n+. The action of T is then t · (k, H, N) = (kt−1,H, tNt−1) so that we can also think of M as
M = h×(K×n+)/T . The tangent space toM at [(k, V )] is identified with k/ihR+b by [(ks, Vs)] := [(kesX , V +sW )].

Consider the map
π : M −→ g

[k, V ] 7→ kV k−1 (3.2)

The topological degree of π is the cardinality of the Weyl group W: to see this it is sufficient to note that AdKhC ⊂ g

has the advocated degree and then use a continuity argument.
The differential of the map π : M→ g at a point [(k, V )] is then computed as

d
ds

AdkesX (V + sW )
∣∣
s=0

= k ([X, V ] + W ) k−1 , X ∈ k/ihR, W ∈ b . (3.3)

In order to write a matrix representation of the above map we write it in the natural basis of TMg = n− + b+

dπ : T[k,V ]M∼ k/ihR ⊕ b+ −→ n− + b+

(X, W ) 7→ dπ(X, W ) = Adk([X, V ] + W ) (3.4)

We compute the determinant of the above map without the Adk term (which does not change its value) and we
think of n− as a vector space over R with a real basis provided by n− :=

∑
α<0 R{Eα}+ i

∑
α<0 R{Eα}

adH+N (Xα) = <(α(H))E−α + i=(α(H))E−α +
∑

−β>−α

C{E−β} mod b+ (3.5)

adH+N (Yα) = −=(α(H))E−α + i<(α(H))E−α +
∑

−β>−α

C{E−β} mod b+ (3.6)

V := H + N

It appears that the matrix has a block-uppertriangular shape and these “upper triangular” parts do not contribute
to the determinant. The latter becomes then the product of the determinants of the above 2× 2 blocks which are
simply |α(H)|2.
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The Jacobian of dπ at the point [k, V ] ∈M (V = H + N) is thus

J(k, V ) =
∏

α∈R+

|α(H)|2 =: |∆(H)|2. (3.7)

The notation ∆(H) :=
∏

α∈R+
α(H) is used in analogy with the case of g = sl(n, C) where it reduces to the

Vandermonde determinant. A well known property is that

∆(Hw) = (−)w∆(H) (3.8)

where w ∈ W and Hw stands for the action of the Weyl group on hC and the notation (−)w means the parity of
the Weyl-transformation (i.e. the parity of the number of elementary reflections along walls of Weyl chambers in
which w can be decomposed). Collecting these pieces of information we have proved the following

Theorem 3.1 (Complex-Weyl integration formula) Let F : g → C be a smooth integrable function invariant
under the adjoint action of K. Then∫

g

dMF (M) = ck

∫
hC×n+

dH dNF (H + N) |∆(H)|2 , ck :=
µ(K)/µ(T )

|W|

where dM, dH, dN are the Lebesgue measures on g, hC, n+ respectively defined above, µ(K) and µ(T ) are the
induced measures on the compact group K and the maximal torus T , W is the Weyl group and |W| is its cardinality.

There is one more piece of information that we can extract from the above and is contained in the following

Corollary 3.1 For any AdK–invariant smooth integrable function F : g → C the function

F̂ (H) :=
∫

n+

dNF (H + N) : hC → C (3.9)

is Weyl–invariant.

Proof. By the generalized Schur decomposition (Thm. 2.1) a regular element M can be represented modulo the
AdK action as H +N ∈ h+n+ or Hw + Ñ where Hw is in the same W–orbit through H and Ñ ∈ n+ is some other
element in the same nilpotent subalgebra n+. In general the dependence of Ñ on N,H is a complicated expression.
Consider a small ball M ∈ U ⊂ g consisting of regular elements. This ball can be mapped diffeomorphically to some
neighborhood H × L in hC × (K × n+)/T with H lying in a suitable Weyl chamber and containing H. Choosing
another Weyl chamber Hw we have a distinct diffeomorphism between U and Hw×L̃. Since the Jacobian computed
above is always |∆(H)|2 = |∆(Hw)2| and independent of N , we conclude that the transformation N 7→ Ñ preserves
the Lebesgue measure of n+, namely dÑ/ dN = 1. Since regular elements are open and dense (and the complement
has zero measure) we can then write

F̂ (Hw) =
∫

n+

dÑF (Hw + Ñ) =
∫

n+

dÑF (Adk(Hw + Ñ)) =
∫

n+

F (H + N) dN = F̂ (H) . (3.10)

Q.E.D.

The integration formula of Thm. 3.1 should be considered a mild generalization of the standard Weyl integration
formula which we state here for functions on the Lie algebra of a compact Lie group K.
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Theorem 3.2 (Weyl integration formula) Let F : k → C be a smooth function integrable with respect to the
Lebesgue measure. Then ∫

k

dXF (X) = ck

∫
ihR

dH|∆(H)|2
∫

K

dkF (Adk(H)) (3.11)

In case of an AdK–invariant function the above reduces to∫
k

dXF (X) = ck

∫
ihR

dH|∆(H)|2F (H) (3.12)

where we need to put the absolute–value sign because ∆(H)2 may be negative on ihR if dim n+ is odd (ck has the
same meaning and value as in Thm. 3.1).

Remark 3.1 The explicit value of µ(K)/µ(T ) was computed by Macdonald [8] for a slightly different choice of
normalization for the Lebesgue measure. The actual value of this constant is irrelevant for our purpose and does
not directly enter the computation of the proportionality constant in the conjecture.

4 Gaussian integrals

Let VR be a real vector space and 〈, 〉 : VR × VR → R a positive definite bilinear pairing (an inner product). Let
VC := VR⊗C be its complexification. Denote by dx the Lebesgue measure on VR and dz the Lebesgue measure on
VC (the normalizations of which are irrelevant at this point). The inner product 〈, 〉 extends to an inner-product
(linearly over C) on VC. Moreover the real form VR ⊂ VC defines also a natural conjugation z → z which fixes VR.

Lemma 4.1 With the notations and definitions above, for any polynomial function F on VC × VC define

< F >R:=
1

ZR

∫
VR

∫
VR

dxdye−a〈x,x〉−c〈y,y〉−2b〈x,y〉F (x, y)

< F >C:=
1

ZC

∫
VC

dze−a〈z,z〉−c〈z,z〉−2b〈z,z〉F (z, z) (4.1)

where ZR and ZC are determined4 by the requirement that < 1 >= 1. While the convergence of the integrals in the
two cases imposes different conditions on the numbers a, b, c, nevertheless (i) both < F >R,C are polynomials in
a/δ, b/δ, c/δ, δ := ac− b2 and (ii) as polynomials they coincide.

Proof. The key is in showing that the generating functions for the moments of the two integrals in either cases
are identical, namely that for A,B ∈ VC

GR(A,B) :=
〈
e〈x,A〉+〈y,B〉

〉
R

= exp
[
1
4

(
c

δ
〈A,A〉+

a

δ
〈B,B〉 − 2

b

δ
〈A,B〉

)]
= GC(A,B) :=

〈
e〈z,A〉+〈z,B〉

〉
C

(4.2)

for then < F >R= F (∂A, ∂B)GR(A,B)
∣∣
A=0=B

=< F >C, which proves both points of the lemma at the same
time. In order to show (4.2) we use an orthonormal coordinate basis for 〈, 〉 so that –writing A = (α1, . . . , αn) and
B = (β1, . . . , βn) in this basis– the integral GR factorizes as GR =

∏
G1(αj , βj) with

G1(α, β) :=
1

Z1,R

∫
R

dx

∫
R

dy exp
[
−(x, y)M

(
x
y

)
+ xα + yβ

]
, M :=

(
a b
b c

)
(4.3)

4It is an easy exercise that we leave to the interested reader to verify that ZR = (2π)nδ
n
2 , ZC = (2π)n(−δ)

n
2 , n = dimR VR =

dimC VC, δ = ac− b2. These precise expressions are nevertheless irrelevant for our purposes.
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Define (x′, y′) = (x, y)− 1
2 (α, β)M−1, where now the contours of integration may be some lines parallel to the real

axis in the complex x′ and y′ planes. However the ensuing integrals can be deformed (by Cauchy theorem) back
to the real axis and the integral yields G1(α, β) = g(α, β) := exp 1

4

[
c
δ α2 + a

δ β2 − 2 b
δ αβ

]
.

For the second case we have GC =
∏

G̃1(αj , βj) with G̃1(α, β) given below: we need to express the integration
in the real/imaginary part of z = x + iy

G̃1(α, β) :=
1

Z1,C

∫
C

d2z exp
[
−(z, z)

(
a b
b c

)(
z
z

)
+ zα + zβ

]
= (4.4)

=
∫

R

∫
R

dxdy exp
[
−(x, y)

(
a + c + 2b i(a− c)
i(a− c) 2b− a− c

)(
x
y

)
+ x(α + β) + iy(α− β)

]
(4.5)

In this case we perform the shift (x′, y′) = (x, y) − 1
2 (α + β, i(α − β))

(
a + c + 2b i(a− c)
i(a− c) 2b− a− c

)−1

, followed by

deforming back the integration contours on the real x′ and y′ axes. Straightforward linear algebra gives the same
result g(α, β) as above. Q.E.D.

5 Proof of Conjecture 1

Let ϑ : g → g be the Cartan involution (antilinear)

ϑ(cEα) = −cE−α , ϑ(cHα) = −cHα. (5.1)

Definition 5.1 For a (semi)simple Lie algebra g over C, given the Cartan involution ϑ defined above, we will
denote by M† = −ϑ(M), and by Mϑ = ϑ(M).

Remark 5.1 The notation M† has been defined to coincide with the usual hermitian conjugate in the standard
fundamental representation of sl(n, C).

The Cartan involution ϑ (or †) defines a real form of g which is precisely k, the compact real form as the
1–eigenspace of ϑ. Two properties are immediate (〈, 〉 is the Killing form):

•
〈
M,Mϑ

〉
≤ 0 is a negative definite sesquilinear quadratic form for M ∈ g;

•
〈
X, X†〉 = −

〈
X, Xϑ

〉
= −〈X, X〉 ≥ 0 is a positive definite quadratic form for X ∈ k (as a real vector space).

Consider the following quadratic form on g× g

QA(X, Y ) := a 〈X, X〉+ 2b 〈X, Y 〉+ c 〈Y, Y 〉 , A :=
(

a b
b c

)
(5.2)

We leave to the reader to verify the following easy

Lemma 5.1 There exist two open domains Dk and Dıg for the parameters a, b, c such that

• if (a, b, c) ∈ Dk then <QA(X, Y ) is positive definite on k× k ;

• if (a, b, c) ∈ Dıg then <QA(M,Mϑ) is positive definite on g.
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The specific form of these domains is largely irrelevant for our considerations and in the interest of conciseness we
will not specify them further.

Definition 5.2 Define

Zk :=
∫

k

∫
k

dXdY e−QA(X,Y ) , (a, b, c) ∈ Dk , Zg :=
∫

g

dMe−QA(M,Mϑ) , (a, b, c) ∈ Dıg . (5.3)

Then, for any polynomial function F on g× g we define

< F >k:=
1
Zk

∫
k

∫
k

dXdY F (X, Y )e−QA(X,Y ) , < F >g:=
1
Zg

∫
g

dMF (M,Mϑ)e−QA(M,Mϑ) (5.4)

As an application of Lemma 4.1 with VR = k, VC = k ⊗ C = g and ϑ as the involution leaving k invariant, we
have

Proposition 5.1 For any polynomial function F on g × g both < F >k and < F >g are polynomials in
a/δ, b/δ, c/δ with δ = ac− b2. As polynomials they coincide

The next theorem contains the proof of Conjecture 1 with precise values of the proportionality constants.

Theorem 5.1 Let F be an AdK invariant (polynomial) function on g×g, where the action of AdK is the diagonal
action

F (X, Y ) = F (Adk(X), Adk(Y )) , ∀X, Y ∈ g (5.5)

Then, for any H,J ∈ hC∫
K

dkF (H,Adk(J))eγ〈H,Adk(J)〉 =
Cg

|W|
∑

w∈W

eγ〈H,Jw〉

∆(H)∆(Jw)

∫
n+

dNF (H + N, Jw + Nϑ)eγ〈N,Nϑ〉∫
n+

dNeγ〈N,Nϑ〉 (5.6)

The normalization constant Cg is given by

Cg = |W|
dim h∏
j=1

mj !
∏
α>0

〈α, α〉
2γ

. (5.7)

where mj are the exponents of the Weyl group. Moreover we have∫
n+

dNeγ〈N,Nϑ〉 =
∏
α>0

π 〈α, α〉
2γ

(5.8)

Remark 5.2 By simplifying the values of the constants (note that dim n+ is the number of positive roots) we obtain∫
K

dkF (H,Adk(J))eγ〈H,Adk(J)〉 =

∏dim h
j=1 mj !
πdim n+

∑
w∈W

eγ〈H,Jw〉

∆(H)∆(Jw)

∫
n+

dNF (H + N, Jw + Nϑ)eγ〈N,Nϑ〉 (5.9)

Remark 5.3 Note that the convergence of the Gaussian integral in the formula demands <(γ) > 0, but the identity
is one between analytic functions of γ.
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Proof. We start from the proof of (5.8): since 〈Eα, Eβ〉 = 2
〈α,α〉δα,−β

5, writing N =
∑

α>0 nαEα the integral is
recast into the form ∫

n+

dNeγ〈N,Nϑ〉 =
∏
α>0

∫
C

d2nαe
−2γ
〈α,α〉 |nα|2 =

∏
α>0

π 〈α, α〉
2γ

(<(γ) > 0) . (5.10)

The value of Cg is computed by evaluating explicitly the integrals on both sides for F ≡ 1, which reduces the
formula to the famous Harish–Chandra expression∫

K

dkeγ〈H,Adk(J)〉 =
Cg

|W|
∑

w∈W

eγ〈H,Jw〉

∆(H)∆(Jw)
(5.11)

In this case the equality was established in (Thm. 2, pag 104 [3])6 where the value of the constant Cg was given by
Cg = (γ)− dim n+

(
∆,∆

)
. The bracket

(
p(H), q(H)

)
was defined ibidem for any polynomials p, q over h by writing

them in a orthonormal basis 〈ωj , ωk〉 = δjk
7

p(H) :=
∑
~n

a~n

dim(h)∏
`=1

ωn`

` (H) , q(H) :=
∑
~n

b~n

dim(h)∏
`=1

ωn`

` (H) (5.12)

(
p, q
)

:=
∑
~n

a~nb~n

dim(h)∏
`=1

m`! (5.13)

The number
(
∆,∆

)
(∆ =

∏
α>0 α) has been computed in [8]8 and is given by

(
∆,∆

)
= 2

dim h−dim g
2 |W|

n∏
j=1

mi!
∏
α>0

〈α, α〉 (5.14)

which proves the expression for the constants noticing that dim g−dim h
2 = dim n+.

We now turn to the proof of the equality: consider first the integral over k× k

1
Zk

∫
k

∫
k

dX dY F (X, Y )e−a〈X,X〉−c〈Y,Y 〉−2b〈X,Y 〉 =

=
c2
k

Zk

∫
ihR

∫
ihR

dH dJ∆(H)2∆(J)2e−a〈H,H〉−c〈J,J〉
∫

K

dkF (H, kJk−1)e−2b〈H,kJk−1〉︸ ︷︷ ︸
=:I(H,J)

(5.15)

where we have used Weyl integration formula (Thm. 3.2) twice. On the other hand for the integral over g, using
the complex Weyl integration formula (Thm. 3.1) we have

T (a, b, c) :=
1
Zg

∫
g

dMF (M,Mϑ)e−a〈M,M〉−c〈Mϑ,Mϑ〉−2b〈M,Mϑ〉 =

=
ck

Zg

∫
hC

dZ|∆(Z)|2e−a〈Z,Z〉−c〈Zϑ,Zϑ〉
∫

n+

dNF (Z + N,Zϑ + Nϑ)e−2b〈Z+N,Zϑ+Nϑ〉 =

5 Indeed, 〈[Eα, E−α], H〉 = 〈Eα, [E−α, H]〉 = α(H) 〈Eα, E−α〉. On the other hand [Eα, E−α] = Hα and thus α(H) 〈Eα, E−α〉 =
〈Hα, H〉. Evaluating on H = Hα (α(Hα) = 2, 〈Hα, Hα〉 = 4

〈α,α〉 ) we get the assertion.
6In loc. cit. the exponent has a plus sign and no constant γ, which means that we have to map H 7→ γH in Harish–Chandra’s

formula, thus yielding the factor (γ)− dim n+ due to the homogeneity of ∆.
7We denote by the same symbol 〈, 〉 the induced inner product on h∨.
8 The formula is quoted as reported in an appendix of a paper of Harder cited ibidem, due to a private communication of Steinberg.
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=
ck

Zg

∫
hC

dZ|∆(Z)|2e−a〈Z,Z〉−c〈Zϑ,Zϑ〉−2b〈Z,Zϑ〉
∫

n+

dNF (Z + N,Zϑ + Nϑ)e−2b〈N,Nϑ〉 (5.16)

Here we have used that f(M) := F (M,Mϑ)e−QA(M,Mϑ) is AdK–invariant (but not AdG–invariant!) and then the
simple fact that

〈
Z + N,Zϑ + Nϑ

〉
=
〈
Z,Zϑ

〉
+
〈
N,Nϑ

〉
.

We now point out that T (a, b, c) is a polynomial in a/δ, b/δ, c/δ by Lemma 4.1. Since |∆(Z)|2 = (−)n+∆(Z)∆(Zϑ)
(where Zϑ = −Z† is again the natural conjugation w.r.t. ihR), applying once more Lemma 4.1 with VR = ihR and
VC = hC we obtain

T (a, b, c) =
(−)n+ck

Zg

∫
ihR

dH

∫
ihR

dJ ∆(H)∆(J)e−a〈H,H〉−c〈J,J〉−2b〈H,J〉
∫

n+

dNF (H + N, J + Nϑ)e−2b〈N,Nϑ〉 =

=
(−)n+ckZn+

Zg

∫
ihR

dH

∫
ihR

dJ ∆(H)2∆(J)2e−a〈H,H〉−c〈J,J〉 e−2b〈H,J〉

∆(H)∆(J)
1
Zn+

∫
n+

dNF (H + N, J + Nϑ)e−2b〈N,Nϑ〉

︸ ︷︷ ︸
=:G(H,J)

(5.17)

where the last line is just a different way of rewriting the previous line with Zn+ =
∫

n+
exp−2b

〈
N,Nϑ

〉
dN .

Comparison of formulæ (5.15) and (5.17) suggests the näıve observation that I(H,J) =
(−)n+ckZkZn+

c2
kZg

G(H,J)
but this cannot possibly be the case since I(H,J) is Weyl–invariant in both variables while in general G(H,J) is
not.

What will be shown instead is that the symmetrization of G(H,J) is proportional to I(H,J), namely

I(H,J) =
(−)n+ckZkZn+

c2
kZg

1
|W|

∑
w∈W

G(H,Jw) (5.18)

which is precisely the assertion of our theorem. Note that G(Hw, Jw): indeed from Corollary 3.1 the integral9

f(Z,Zϑ) :=
∫

n+

dNF (Z + N,Zϑ + Nϑ)e−2b〈N,Nϑ〉 (5.19)

is a polynomial (since F is a polynomial in both variables) with invariance f(Zw, Zϑ
w) = f(Z,Zϑ). The polynomial

f(H,J) can be written as
f(H,J) = eH∂Z eJ∂

Zϑ f(Z,Zϑ)
∣∣
Z=0=Zϑ (5.20)

where H∂Z , J∂Zϑ stand for the vector–fields H∂ZZ = H,H∂ZZϑ = 0 and similarly J∂ZϑZ = 0, J∂ZϑZϑ = J .
Therefore it is sufficient to symmetrize G(H,J) with respect to –say– J in order to obtain a completely Weyl–
invariant function. The symmetrization can be carried under the integral sign without changing its value since the
measures dH, dJ and the exponential factors that precede G in (5.17) are all W–invariant. We have thus obtained

ckZn+

(−)n+Zg

∫
ihR×ihR

dH dJ∆(H)2∆(J)2e−a〈H,H〉−c〈J,J〉
∑

w∈W

G(H,Jw)
|W|

=
c2
k

Zk

∫
ihR×ihR

dH dJ∆(H)2∆(J)2e−a〈H,H〉−c〈J,J〉I(H,J)

Of course this equality per se does not imply eq. 5.18. However we can use the following argument. We replace
the invariant polynomial F (X, Y ) by h(X)g(Y )F (X, Y ) with h, g arbitrary AdK invariant polynomials over k

9The prefactor of which already has the advocated invariance.

9



Note that g(H + N) = g(H) (and so for h): indeed any AdK–invariant polynomial on k is automatically AdG–
invariant (on k ⊗ C = g) and for a generic H, H + N is AdG–conjugate to H itself since adH+N is semisimple
(in the adjoint representation). Thus, in eq. 5.17, the two extra factors h, g will be independent of N and thus
factorizable outside of the integral over the nilpotent algebra n+.

On the other hand, in eq. 5.15 they clearly and immediately factor out of the K-integral thus yielding the
identity∫

ihR

dH

∫
ihR

dJ ∆(H)2∆(J)2e−a〈H,H〉−c〈J,J〉h(H)g(J)

(
ck(−)n+Zn+

Zg

1
|W|

∑
w∈W

G(H,Jw)− c2
k

Zk
I(H,J)

)
︸ ︷︷ ︸

=:R(J,H)

= 0 (5.21)

valid for arbitrary Weyl–invariants polynomials h, g on hR. Note that in H := L2(ihR× ihR, dH dJe−a〈H,H〉−c〈J,J〉)
the set of all polynomials is dense and that the bracket expression above belongs to this space (we can take a, c ∈ R−

for this computation). The projector onto the subspace of W–invariant functions

HW := {f(H,J) ∈ H : f(Hw, Jw′) = f(H,J) ,∀w,w′ ∈ W} (5.22)

is self-adjoint and hence the range is a closed subspace, to which R(J,H) belongs. The space of Weyl invariant
polynomials form a basis in this space and in particular are dense. Thus the vanishing of eq. 5.21 says that R(J,H)
is orthogonal to such a dense set, thus is identically vanishing. The last detail is that the identity so far has been
proved only for H,J ∈ ihR; however, being an identity between polynomials, it must hold for its complexification
as well, namely on the whole hC. The theorem is proved and so is Conjecture 1, with γ = −2b. Q.E.D.
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