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Abstract. Metastable dynamical systems were recently studied [9] in the
framework of one-dimensional piecewise expanding maps on two disjoint in-

variant sets, each possessing its own ergodic absolutely continuous invariant
measure (acim). Under small deterministic perturbations, holes between the

two disjoint systems are created, and the two ergodic systems merge into one.
The long term dynamics of the newly formed metastable system is defined by

the unique acim on the combined ergodic sets. The main result of [9] proves
that this combined acim can be approximated by a convex combination of

the disjoint acims with weights depending on the ratio of the respective mea-
sures of the holes. In this note we present an entirely different approach to

metastable systems. We consider two piecewise expanding maps: one is the
original map, τ1, defined on two disjoint invariant sets of RN and the other

is a deterministically perturbed version of τ1, τ2, which allows passage be-
tween the two disjoint invariant sets of τ1. We model this system by a position

dependent random map based on τ1 and τ2, to which we associate position
dependent probabilities that reflect the switching between the maps. A typical

orbit spends a long time in one of the ergodic sets but eventually switches to
the other. Such behavior can be attributed to physical holes as between ad-

joining billiard tables or more abstract situations where balls can “leap” from
one table to the other. Using results for random maps a result similar to the

one dimensional main result of [9] is proved in N dimensions. We also consider
holes in more than two invariant sets. A number of examples are presented.

1. Introduction

One-dimensional metastable systems were recently studied [9] in the framework
of piecewise expanding maps on two disjoint ergodic sets. Under small determin-
istic perturbations, the asymptotic dynamics of the merged metastable system is
captured by the absolutely continuous invariant measure (acim) on the combined
ergodic sets. The main result of [9] shows that this combined acim can be approx-
imated by a convex combination of the two disjoint acims with weights depending
on the respective measures of the holes. The method of [9] invokes the usual BV
techniques that apply naturally in a setting where the slopes of the original map
are > 2. For maps with slopes only > 1 in magnitude, the BV technique encoun-
ters difficulties as the partitions needed for the approximating family of maps have
elements that go to zero in measure and hence render the standard BV inequalities
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ineffective in establishing precompactness of the family of probability density func-
tions associated with the family of approximating maps. To handle this problem,
the authors of [9] introduce some additional conditions on the maps they consider.

In this note we take a different approach to modeling metastable behavior. We
consider two piecewise expanding maps: one is the original map, τ1, defined on
two disjoint invariant sets of R

N and the other, τ2, is a deterministically perturbed
version of τ1, τ2, which allows passage between the two disjoint invariant sets of τ1

via holes. We model such a system by means of a random map based on τ1 and
τ2, to which we associate position dependent probabilities that reflect the switching
between the maps. A typical orbit spends a random amount of time governed by
the dynamics of either τ1 or τ2, then switches to the other map. Suppose p1, the
probability of using map τ1, is close to 1, then, with very high probability, the
orbit spends a lot of time under the influence of τ1, that is, it stays in either one
or the other of the two disjoint sets invariant under τ1. Since p1 < 1, there is
a small but positive probability of switching from τ1 to τ2. When this happens,
the dynamics comes under the control of τ2, which allows movement between the
disjoint invariant sets. Unlike the model in [9] where the hole sizes shrink to 0, the
hole sizes in our random map model stay fixed. (Their measures in a skew product
interpretation of random maps converge to 0, so one could argue that both models
are in a way similar.) What changes are the probabilities of switching from one
map to the other. As p1 approaches 1, the orbits are almost completely defined
by τ1 and therefore remain in one or the other of the two disjoint invariant sets
for a very long time. This behavior is the hallmark of metastable dynamics. Our
main result establishes a result similar in spirit to that in [9]: we prove that, as the
probability of using τ1 converges to 1, the dynamics are captured by an acim that
is a convex combination of the acims on the two disjoint invariant sets and we can
calculate the weights of the respective acims from a formula analogous to the one
derived in [9].

In the billiards problem metastable behavior is attributed to small physical holes
in the boundary between the tables. From the perspective of random maps, the
holes can be large; it is the probabilities of switching that controls the metastable
behavior. This allows for the consideration of situations where there are no actual
physical holes, but where balls can “leap” from one table to the other.

In Sections 2 and 3 we recall the definition of a position dependent random map
and collect some existence and continuity results in 1 and N dimensions. In Section
4 we present the main result for holes between two invariant sets: there exists a
unique acim which is a convex combination of the acims on the two ergodic sets
and the weights in the combination can be calculated from a formula similar to
the one in [9]. In Section 5 we present the main result for a case with more than
two invariant subsystems. Deterministic model of such situation is discussed in [4].
Section 6 contains examples.

2. Position Dependent Random Maps and Their Properties

Let (I, B, λ) be a measure space, where λ is an underlying measure. Let τk : I →
I, k = 1, ..., K be piecewise one-to-one, differentiable, non-singular transformations
on a common partition P of I : P = {I1, ..., Iq} and τk,i = τk |Ii

, i = 1, ..., q, k =
1, ..., K (P can be found by considering finer partitions). We define the transition
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function for the random map T = {τ1, ...τK; p1(x), ...pK(x)} as follows:

(1) P(x, A) =

K∑

k=1

pk(x)χA(τk(x)),

where A is any measurable set and {pk(x)}K
k=1 is a set of position dependent

measurable probabilities, i.e.,
∑K

k=1 pk(x) = 1, pk(x) ≥ 0, for any x ∈ I and
χA denotes the characteristic function of the set A. We define T (x) = τk(x)
with probability pk(x) and TN(x) = τkN

◦ τkN−1 ◦ ... ◦ τk1(x) with probability
pkN

(τkN−1 ◦ ...◦τk1(x)) ·pkN−1(τkN−2 ◦ ...◦τk1(x)) · · ·pk1(x). The transition function
P induces an operator P∗ on measures on (I, B) defined by

P∗µ(A) =

∫

I

P(x, A)dµ(x) =
K∑

k=1

∫

I

pk(x)χA(τk(x))dµ(x)

=

K∑

k=1

∫

τ
−1
k

(A)

pk(x)dµ(x) =

K∑

k=1

q
∑

i=1

∫

τ
−1
k,i

(A)

pk(x)dµ(x)

(2)

We say that the measure µ is T -invariant iff P∗µ = µ, i.e.,

(3) µ(A) =

K∑

k=1

∫

τ−1
k

(A)

pk(x)dµ(x), A ∈ B.

If µ has density f with respect to λ, the P∗µ has also a density which we denote
by PT f . By change of variables, we obtain

∫

A

PT f(x)dλ(x) =

K∑

k=1

q
∑

i=1

∫

τ−1
k,i

(A)

pk(x)f(x)dλ(x)

=

K∑

k=1

q
∑

i=1

∫

A

pk(τ−1
k,i x)f(τ−1

k,i x)
1

Jk,i(τ
−1
k,i )

dλ(x) ,

(4)

where Jk,i is the Jacobian of τk,i with respect to λ, J(τ ) = dτ∗(λ)
dλ

. Since this holds
for any measurable set A we obtain an a.e. equality:

(5) (PT f)(x) =

K∑

k=1

q
∑

i=1

pk(τ−1
k,i x)f(τ−1

k,i x)
1

Jk,i(τ
−1
k,i )

χτk(Ii)(x)

or

(6) (PTf)(x) =

K∑

k=1

Pτk
(pkf) (x)

where Pτk
is the Perron-Frobenius operator corresponding to the transformation τk

(see [2] for details). We call PT the Perron-Frobenius operator of the random map
T .

3. Continuity theorems

3.1. Existence and continuity theorem in one dimension. Let (I, B, λ) be
a measure space, where λ is normalized Lebesgue measure on I = [a, b]. Let
τk : I → I, k = 1, ..., K be piecewise one-to-one and C2, non-singular transfor-
mations on a partition P of I : P = {I1, ..., Iq} and τk,i = τk |Ii

, i = 1, ..., q,
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k = 1, ..., K. Let {pk(x)}K
k=1 be a set of position dependent measurable probabili-

ties, i.e.,
∑K

k=1 pk(x) = 1, pk(x) ≥ 0, for any x ∈ I. Assume in addition that pk is
piecewise differentiable on P.

Denote by V (·) the standard one-dimensional variation of a function, and by
BV (I) the space of functions of bounded variations on I equipped with the norm
‖ · ‖BV = V (·) + ‖ · ‖1.

Let gk(x) = pk(x)
|τ′

k
(x)|

, k = 1, . . . , K. We assume the following conditions:

Condition (A):
∑K

k=1 gk(x) < α < 1, x ∈ I, and
Condition (B): gk ∈ BV (I), k = 1, . . . , K .

Let T = {τ1, . . . , τK ; p1, . . . , pK} be a random map with position dependent prob-
abilities satisfying conditions (A) and (B). We define PN as a maximal common
monotonicity partition for all maps defining TN . For w = (k1, . . . , kN−1, kN) ∈
{1, ..., K}N we define

gw =
pkN

(τkN−1 ◦ ... ◦ τk1(x)) · pkN−1 (τkN−2 ◦ ... ◦ τk1(x)) · · ·pk1(x)

|(τkN
◦ τkN−1 ◦ ... ◦ τk1)

′(x)|
.

The following results are proved in [1]:

Lemma 1. Let T satisfy conditions (A) and (B). Then for any f ∈ BV (I) and
M ∈ N,

(7) ‖P M
T f‖BV ≤ AM‖f‖BV + BM‖f‖1,

where AM = 3αM + WM , BM = βM (2αM + WM ), βM = maxJ∈PM (λ(J))−1,
WM ≡ maxJ∈PM

∑

w∈{1,...,K}M VJgw.

Theorem 1. Let T be a random map which satisfies conditions (A) and (B).
Then T preserves a measure which is absolutely continuous with respect to Lebesgue
measure. The operator PT is quasi-compact on BV (I), see [2].

We now present the continuity theorem in one dimension. A similar theorem
was proved in proposition 2 of [6] under stronger conditions. Our aim is to show
that it holds under the weaker conditions (A) and (B).

Theorem 2 (Continuity Theorem 1-dim). Let T = {τ1, . . . , τK; p1, . . . , pK} be a
random map with position dependent probabilities satisfying conditions (A) and (B).

Let {p
(n)
1 , . . . , p

(n)
K }∞n=1 be a sequence of sets of probabilities such that p

(n)
k → pk as

n → +∞, k = 1, . . . , K, in the piecewise C1 topology on the fixed partition P. Let

T (n) = {τ1, . . . , τK ; p
(n)
1 , . . . , p

(n)
K }, n = 1, 2, . . . be a sequence of random maps. For

n large, T (n) has an invariant density f(n) and the sequence {f(n)}∞n=1 is precompact
in L1. Moreover, any limit point f∗ of this sequence is a fixed point of PT .

Proof. We will prove the theorem in three steps. In the first step we show that an
inequality similar to inequality (7) of lemma 1 holds uniformly for all T (n) with n
large enough. In order to achieve this, we need to show that for large enough n
conditions (A) and (B) are satisfied uniformly.

Suppose α < γ < 1, where
∑K

k=1 gk(x) < α < 1. First, choose ε such that
∑K

k=1
ε

|τ′

k
(x)|

< γ − α. Then choose N1 such that for n > N1 and 1 ≤ k ≤ K,

pk − ε ≤ p
(n)
k ≤ pk + ε. Then

K∑

k=1

p
(n)
k (x)

|τ ′
k(x)|

≤

K∑

k=1

pk + ε

|τ ′
k(x)|

=

K∑

k=1

pk(x)

|τ ′
k(x)|

+

K∑

k=1

ε

|τ ′
k(x)|

≤ α + (γ − α) = γ < 1.
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Therefore, condition (A) holds uniformly for all n > N1, with α replaced by γ.
Regarding condition (B), note that

|VJg(n) − VJg| ≤

∫

J

|(g(n))′ − g′|dλ → 0 as n → ∞.

It follows that there exists a constant C1 and an integer N2 such that for all n > N2,
VJg(n) < C1 for any interval J ⊂ I.

Now consider W
(n)
1 = maxJ∈P

∑K
k=1 VJg

(n)
k . From the above statement it follows

that W
(n)
1 is also uniformly bounded for n sufficiently large. That is, there exists C2

and integer N3 such that for all n > N3, W
(n)
1 < C2. Let N4 = max{N1, N2, N3}

and C = max{C1, C2}. It is shown in [1] that W
(n)
M ≤ MαM−1W

(n)
1 , hence for

n > N4, W
(n)
M < MγM−1C. Therefore, for n > N4, inequality (7) holds uniformly

with α replaced by γ.
In the next step we show that the sequence of invariant densities

{
f(n)

}
is

uniformly bounded in BV (I). Without loss of generality consider
{
f(n)

}∞

n=N4+1

instead of
{
f(n)

}
. Moreover since inequality (7) is now satisfied uniformly for all

n, we drop the superscript of (n) and write AM , BM for A
(n)
M , B

(n)
M respectively.

Also assume M is large enough so that AM = 3γM + WM < 1.
To summarize, we have shown that there exists M such that for any f ∈ BV (I)

and n ∈ N:

(8) ‖P M
T (n)f‖BV ≤ AM‖f‖BV + BM‖f‖1,

where AM = 3γM + WM < 1, BM = βM (2γM + WM ), βM = maxJ∈PM (λ(J))−1 ,
WM ≡ maxJ∈PM

∑

w∈{1,...,K}M VJgw.

Using inequality (8) repeatedly, one can show that each f(n) is a limit point of

the sequence of averages
{

1
m

∑m−1
j=0 P Mj

T (n)1
}

and

‖f(n)‖BV ≤ 1 +
BM

1 − AM

.

Therefore
{
f(n)

}
is a bounded set in BV (I) and hence it has a limit point f∗ in

L1.
In the final step show that f∗ is invariant under PT :

‖PT f∗ − f∗‖1 ≤ ‖PTf∗ − PT (n)f∗‖1 + ‖PT (n)f∗ − PT (n)f(n)‖1

+ ‖PT (n)f(n) − f(n)‖1 + ‖f(n) − f∗‖1

= ‖

K∑

k=1

Pτk
(pkf∗) −

K∑

k=1

Pτk
(p

(n)
k f∗)‖1

+ ‖

K∑

k=1

Pτk
(p

(n)
k f∗) −

K∑

k=1

Pτk
(p

(n)
k f(n))‖1

+ ‖PT (n)f(n) − f(n)‖1 + ‖f(n) − f∗‖1

≤

K∑

k=1

‖f∗(pk − p
(n)
k )‖1 +

K∑

k=1

‖(f∗ − f(n))p
(n)
k ‖1

+ ‖PT (n)f(n) − f(n)‖1 + ‖f(n) − f∗‖1



6 PAWE L GÓRA, ABRAHAM BOYARSKY, AND PEYMAN ESLAMI

The third summand is 0 by definition of f(n). The other three converge to 0 since

f(n) → f∗ and p
(n)
k → pk as n → ∞ in L1 and L∞, respectively. �

3.2. Existence and continuity theorem in higher dimensions. We now prove
the continuity theorem in R

N . Let S be a bounded region in R
N and λN be Lebesgue

measure on S. Let τk : S → S, k = 1, ..., K be piecewise one-to-one and C2, non-
singular transformations on a partition P of S : P = {S1, ..., Sq} and τk,i = τk |Si

,
i = 1, ..., q, k = 1, ..., K. Let each Si be a bounded closed domain having a piecewise
C2 boundary of finite (N − 1)-dimensional measure. We assume that the faces of
∂Si meet at angles bounded uniformly away from 0. We will also assume that the
probabilities pk(x) are piecewise C1 functions on the partition P. Let Dτ−1

k,i (x) be

the derivative matrix of τ−1
k,i at x. We assume:

Condition (C):

max
1≤i≤q

K∑

k=1

pk(x)‖Dτ−1
k,i (τk,i(x))‖ < σ < 1.

The main tool of this section is the multidimensional notion of variation defined
using derivatives in the distributional sense (see [5]):

V (f) =

∫

RN

‖Df‖ = sup{

∫

RN

fdiv(g)dλN : g = (g1, ..., gN) ∈ C1
0(RN , RN)},

where f ∈ L1(R
N ) has bounded support, Df denotes the gradient of f in the

distributional sense, and C1
0(RN , RN) is the space of continuously differentiable

functions from R
N into R

N having a compact support. We will use the following
property of variation which is derived from [5], Remark 2.14: If f = 0 outside a
closed domain A whose boundary is Lipschitz continuous, f|A is continuous, f|int(A)

is C1, then

V (f) =

∫

int(A)

‖Df‖dλN +

∫

∂A

|f |dλN−1,

where λN−1 is the (N − 1)-dimensional measure on the boundary of A. In this
section we shall consider the Banach space (see [5], Remark 1.12),

BV (S) = {f ∈ L1(S) : V (f) < +∞},

with the norm ‖f‖BV = V (f) + ‖f‖1.
Theorems 3 and 4 below were established in [7]. We refer the reader to [7] for

proofs as well as the precise definitions of the functions a(·) and δ(·). We just
remark here that for a random map T = {τ1, . . . , τK; p1, . . . , pK} the functions a
and δ are independent of the probabilities {p1, . . . , pK}.

Theorem 3. If T is a random map which satisfies condition (C), then

(9) V (PT f) ≤ σ(1 + 1/a)V (f) + (M +
σ

aδ
)‖f‖1,

where a = min{a(Si) : i = 1, . . . , q} > 0, δ = min{δ(Si), : i = 1, . . . , q} > 0,

Mk,i = supx∈Si
(Dpk(x) −

DJk,i

Jk,i

pk(x)) and M =
∑K

k=1 max1≤i≤q Mk,i.

Theorem 4. Let T be a random map which satisfies condition (C). If σ(1 +
1/a) < 1, then T preserves a measure which is absolutely continuous with respect
to Lebesgue measure. The operator PT is quasi-compact on BV (S), see [2].
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Now we present the multi-dimensional version of theorem 2. The proof of this
theorem is similar to the proof of the one-dimensional continuity theorem hence we
will only sketch the proof here.

Theorem 5 (Continuity Theorem in R
N). Let T = {τ1, . . . , τK ; p1, . . . , pK} be a

random map with position dependent probabilities, satisfying condition (C). Also

assume that σ(1 + 1/a) < 1, where a is as in [1]. Let {p
(n)
1 , . . . , p

(n)
K }∞n=1 be a se-

quence of sets of probabilities such that p
(n)
k → pk as n → +∞, k = 1, . . . , K, in the

piecewise C1 topology on the fixed partition P. Let T (n) = {τ1, . . . , τK ; p
(n)
1 , . . . , p

(n)
K },

n = 1, 2, . . . be a sequence of random maps. For m large, T (n) has an invariant
density f(n) and the sequence {f(n)}∞n=1 is precompact in L1. Moreover, any limit
point f∗ of this sequence is a fixed point of PT .

Proof. The main part of the proof is to establish an inequality similar to inequality
(9) uniformly for all n larger than some integer N1. As a result of applying theorem
3 to T (n) we obtain:

(10) V (PT (n)f) ≤ σ(n)(1 + 1/a(n))
︸ ︷︷ ︸

A(n)

V (f) + (M (n) +
σ(n)

a(n)δ
)

︸ ︷︷ ︸

B(n)

‖f‖1,

where a(n) = min{a(n)(Si) : i = 1, . . . , q} > 0, δ(n) = min{δ(Si), : i = 1, . . . , q} > 0,

M
(n)
k,i = supx∈Si

(Dp
(n)
k (x) −

DJk,i

Jk,i

p
(n)
k (x)) and M (n) =

∑K
k=1 max1≤i≤q M

(n)
k,i .

Note that a(n) and δ(n) do not depend on probabilities, so the superscript (n)
can be dropped. In order to show that inequality (10) holds uniformly it suffices
to choose N1 large enough that σ(n)(1 + 1/a) < 1 for all n > N1. This is easily

achievable since p
(n)
k → pk for all k = 1, . . . , K. The uniform boundedness of

{
f(n)

}

in BV and the invariance of its limit points under PT follow in a similar way to
the one-dimensional case. Note that in this case it is not necessary to consider a
higher power of the map T (n) as opposed to the one-dimensional case. �

4. Main Result

Let T = {τ1, τ2; p1, p2} be an N -dimensional random map with position depen-
dent probabilities p1(x) = 1 and p2(x) = 0 satisfying conditions of the previous
section. Note that T is essentially the same map as τ1. Suppose the domain of
T is I = I1 ∪ I2, where I1 and I2 are invariant under τ1. Suppose τ1 has exactly
two ergodic measures µ1, and µ2 with densities f1 and f2 on I1 and I2, respec-
tively. The map τ2 differs from τ1 on the sets H1,2 ⊂ I1 and H2,1 ⊂ I2, where

H1,2 = I1 ∩ τ−1
2 (I2) and H2,1 = I2 ∩ τ−1

2 (I1). We assume that

(11) µ1(H1,2) > 0 and µ2(H2,1) > 0 .

Now consider a sequence of random maps T (n) =
{

τ1, τ2; p
(n)
1 , p

(n)
2

}

as pertur-

bations of T , where only the probabilities are changed. Let

p
(n)
2 = p

(n)
2,1χH2,1 + p

(n)
1,2χH1,2(12)

p
(n)
1 = 1 − p

(n)
2 ,(13)

with p
(n)
1,2 , p

(n)
2,1 > 0, independent of x. Our main result is the following theorem.
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Theorem 6. If p
(n)
1,2 , p

(n)
2,1 → 0 and limn→∞

p
(n)
2,1

p
(n)
1,2

exists, then the acim’s of the

n−dimensional random maps T (n) converge to the measure µ = α1µ1+α2µ2, where

α1

α2
=

µ2(H2,1)

µ1(H1,2)
lim

n→∞

p
(n)
2,1

p
(n)
1,2

.

Proof. Let µT (n) be an acim of T (n) (we do not assume its uniqueness). Let f(n)

be the invariant density of µT (n) .
By Theorem 5,

{
f(n)

}

n≥1
is precompact in L1 and if f∗ is a limit point, then

f∗ is of the form α1f1 + α2f2 for some 0 ≤ α1, α2 ≤ 1, α1 + α2 = 1. In terms of
the corresponding measures, there exists a subsequence nk such that:

µT (nk)(H1,2) → α1µ1(H1,2) + α2µ1(H2,1) = α1µ1(H1,2)(14)

µT (nk)(H2,1) → α1µ2(H1,2) + α2µ2(H2,1) = α2µ2(H2,1)(15)

By (11), (14) and (15) we have µT (n)(H1,2) > 0 or µT (n)(H2,1) > 0. Let us
assume µT (n)(H2,1) > 0 without loss of generality. Then,

µT (n)(I1) =

∫

I

P(x, I1)dµT (n) = 1 · µT (n)(I1 \ H1,2) + (1 − p
(n)
1,2 ) · µT (n)(H1,2)

+ 0 · µT (n)(I2 \ H2,1) + p
(n)
1,2µT (n)(H2,1).

Hence,

(16)
µT (n)(H1,2)

µT (n)(H2,1)
=

p
(n)
2,1

p
(n)
1,2

.

Applying (16), (14) and (15), we get

α1

α2
=

µ2(H2,1)

µ1(H1,2)
lim

k→∞

p
(nk)
2,1

p
(nk)
1,2

.

�

Additional information about the spectrum of operators PT (n) is provided in the
following theorem based on results of [8].

Theorem 7. Let us assume that 1 is an eigenvalue of PT of multiplicity 2. For
arbitrarily small δ > 0, there exists an nδ such that for n ≥ nδ the spectrum of
PT (n) intersected with {z : |z − 1| < δ} consists of two eigenvalues of multiplicity 1:
1 and rn, |rn| ≤ 1, rn 6= 1 and rn → 1, as n → ∞.

Proof. The family PT (n) , n ≥ 1, satisfies the assumptions of Corollary 1 of [8] which
implies the above statement. �

5. Main theorem with L ergodic components

Let T = {τ1, τ2; p1, p2} be an N -dimensional random map with position depen-
dent probabilities p1(x) = 1 and p2(x) = 0. So T is essentially the same map as
τ1. Suppose τ1 has L ergodic components I1, . . . , IL, ∪L

i=1Ii = I. Suppose there
are L− 1 pairwise disjoint “holes” {Hi,j}1≤j≤L, j 6=i

in each component Ii. Map τ2

is defined as a piecewise expanding map which has the following properties

τ2(Hi,j) ⊂ Ij , for i, j ∈ {1, . . . , L}
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and τ2 = τ1 outside the holes.

Let T (n) = {τ1, τ2; p
(n)
1 , p

(n)
2 } be a sequence of random maps such that

(17) 1 − p
(n)
1 = p

(n)
2 =

L∑

i=1

∑

j 6=i

p
(n)
i,j χHi,j

,

0 < p
(n)
i,j < 1 and

(18) p
(n)
i,j = h(n)ai,j + o(h(n)) ,

for some function h such that limn→∞ h(n) = 0. Let µ
(n)
T denote the invariant

measure of T (n). Then for every 1 ≤ k ≤ L,

µT (n)(Ik) =

∫

P(x, Ik)dµT (n)(x) =

∫

τ−1
1 (Ik)

p
(n)
1 (x)dµT (n) +

∫

τ−1
2 (Ik)

p
(n)
2 (x)dµT (n) .

It follows that for every 1 ≤ k ≤ L,

(19)
∑

j 6=k

p
(n)
k,j µT (n)(Hk,j) =

∑

i 6=k

p
(n)
i,k µT (n)(Hi,k).

The left hand side of the equation (19) can be interpreted as the amount of
µT (n) -measure that leaves the component Ik and the right hand side as the amount
of µT (n) -measure that enters the component Ik. Intuitively, these two quantities
are equal because µT (n) is preserved under T (n).

Let us define qi,j = ai,jµi(H(i, j)) for j 6= i, qi,i = 1 −
∑

j 6=i qi,j for 1 ≤ i ≤ L,
and

(20) Q = [qi,j]1≤i,j≤L
.

By the continuity theorem for random maps, there exists a subsequence nk such

that µT (nk) → µT =
∑L

i=1 αiµi. Therefore, µT (nk)(Hi,j) → αiµi(Hi,j). Hence, the
equations (19), for n = nk, can be written as

∑

j 6=k

ak,jαkµk(Hk,j) =
∑

i 6=k

ai,kαiµi(Hi,k) + o(1) ,

or

(1 − qk,j)αk =
∑

i 6=k

qi,kαi + o(1) ,

which in matrix form is

αQ = α + o(1) ,

where α = (α1, . . . , αL). If, for w = (w1, . . . , wL) the solution of the equation
w = wQ is stable under small perturbations, then, α = (α1, . . . , αL) satisfies

α · Q = α.

The conditions for stability of eigenvectors for probability matrices are well known,
see for example [3].

We proved the following theorem

Theorem 8. Let T (n) be a sequence of random maps satisfying assumptions of
Section 4 but such that map τ1 has L ≥ 2 ergodic components. Let probabilities

p
(n)
i,j , 1 ≤ i, j ≤ L satisfy assumptions (18). If the matrix Q defined in (20) has

stable left 1-eigenvector, then the invariant measures µT (n) converge as n → ∞ to
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the measure
∑L

i=1 αiµi, where αQ = α, and µi is the τ1-invariant measure on the
i-th ergodic component.

6. Examples

Example 1.

We now present a simple Markov map example on the interval [0,1]. Consider
the maps τ1 and τ2 as shown in figure 1.

Figure 1. Maps τ1 and τ2.

Both maps are Markov on the partition P = {J1 = [0, 0.1], J2 = [0.1, 0.5], J3 =
[0.5, 0.95], J4 = [0.95, 1]}. Let |J | denote the Lebesgue measure of the set J . Then
|J1| = 0.1, |J2| = 0.4, |J3| = 0.45, |J4| = 0.05. τ1 and τ2 have slopes of the
same magnitude on J1, . . . , J4. They are s1 = 5, s2 = 5/4, s3 = 10/9, s4 = 10,
respectively. The ergodic components of τ1 are I1 = J1 ∪ J2 and I2 = J3 ∪ J4. The
holes are H1,2 = J1 and H2,1 = J4.

Our aim is to compute the acims of the random maps T = {τ1, τ2, 1, 0} and

T (n) = {τ1, τ2, p
(n)
1 , p

(n)
2 }, where p

(n)
1 and p

(n)
2 are defined as in equation (13) and

(12). To this end, we will first compute the invariant densities of τ1 and τ2.
The matrices corresponding to Perron-Frobenius operators for τ1 and τ2 are

Mτ1 =







1/5 1/5 0 0
4/5 4/5 0 0
0 0 9/10 9/10
0 0 1/10 1/10







, Mτ2 =







0 0 1/5 1/5
4/5 4/5 0 0
0 0 9/10 9/10

1/10 1/10 0 0







.

Any invariant density of τ1 or τ2 is piecewise constant on the partition P. More-
over, if we denote the value of the invariant density on Ji by fi, 1 ≤ i ≤ 4, then
(f1, f2, f3, f4) is the left eigenvector of the Perron-Frobenius matrix corresponding
to eigenvalue 1. For τ2, one easily checks that (2/3, 2/3, 4/3, 4/3) is the unique
normalized invariant density. On the other hand, τ1 has two ergodic components
with acims µ1 and µ2 which are simply the normalized Lebesgue measure on I1 and
I2, respectively. Any acim of τ1 is of the form tµ1 + (1 − t)µ2, 0 ≤ t ≤ 1.
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It follows from equation (6) that the invariant density of T is the same as the
invariant density of τ1.

For the random map T (n) = {τ1, τ2; p
(n)
1 , p

(n)
2 }, equation (6) implies that the

invariant density (f
(n)
1 , f

(n)
2 , f

(n)
3 , f

(n)
4 ) satisfies

(

f
(n)
1 , f

(n)
2 , f

(n)
3 , f

(n)
4

)

=
(

(1 − p
(n)
1,2)f1, f

(n)
2 , f

(n)
3 , (1− p

(n)
2,1)f

(n)
4

)

Mτ1

+
(

p
(n)
1,2f

(n)
1 , 0, 0, p

(n)
2,1f

(n)
4

)

Mτ2 ,
(21)

which yields f
(n)
1 = f

(n)
2 , f

(n)
3 = f

(n)
4 and p

(n)
2,1f

(n)
4 = 2p

(n)
1,2f

(n)
1 . So the unique

normalized invariant density for T (n) is

f(n) =
2

p
(n)
2,1 + 2p

(n)
1,2

(

p
(n)
2,1 , p

(n)
2,1 , 2p

(n)
1,2 , 2p

(n)
1,2

)

.

Suppose limn→∞ p
(n)
2,1/p

(n)
1,2 = l. Then f(n) → (2/(2 + l))(l, l, 2, 2). It follows

that the invariant measure µT (n) → α1µ1 + α2µ2, where α1 = (2l)/(l + 2) and
α2 = 4/(l + 2). Moreover,

α1

α2
=

1

2
l =

0.05

0.1
l =

µ2(H2,1)

µ1(H1,2)
lim

n→∞

p
(n)
2,1

p
(n)
1,2

.

The Perron-Frobenius operator for the random map T (n) corresponds to the
matrix (already shown in (21))

MT (n) =







1/5− (1/5)p
(n)
1,2 4/5 0 (1/10)p

(n)
1,2

1/5 4/5 0 0
0 0 9/10 1/10

(1/5)p
(n)
2,1 0 9/10 1/10 − (1/10)p

(n)
2,1







,

with eigenvalues: 1, r
(n)
1 = 1/2−(1/20)p

(n)
2,1−(1/10)p

(n)
1,2+a, r

(n)
2 = 1/2−(1/20)p

(n)
2,1−

(1/10)p
(n)
1,2 − a(n) and 0, where

a(n) = (1/20)

√

100 + 16p
(n)
2,1 + 24p

(n)
1,2 + (p

(n)
2,1)2 + 4p

(n)
2,1p

(n)
1,2 + 4(p

(n)
1,2)2 .

For p
(n)
1,2 and p

(n)
2,1 close to 0, we have r

(n)
1 close to 1 and r

(n)
2 close to 0. For example,

if p
(n)
1,2 = p

(n)
2,1 = 0.01, then r

(n)
1 ∼ 0.9995 and r

(n)
2 ∼ −0.0025. The eigenvector

corresponding to r
(n)
1 is v ∼ [−0.749265,−0.751139, 0.375571, 0.373698].

Example 2.

We present a random map with 3 ergodic components of the original map τ1,
see figure 2. Consider maps τ1 and τ2 on a set I = [0, 1]: τ1 has three ergodic
components I1 = [0, 1/3], I2 = [1/3, 2/3] and I3 = [2/3, 1], ∪i=1,2,3Ii = I. On each
components normalized Lebesgue measure µi, i = 1, 2, 3, is τ1-invariant. There are
2 holes in each component. They are

H1,2 = [1/9, 2/9],H1,3 = [2/9, 1/3] ⊂ I1 ;

H2,1 = [1/3, 4/9],H2,3 = [5/9, 2/3] ⊂ I2 ;

H3,1 = [2/3, 7/9],H3,2 = [7/9, 8/9] ⊂ I3 .
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Figure 2. Maps τ1 and τ2 for Example 2 with 3 ergodic components.

Map τ2 is defined as a piecewise expanding map shown in Fig. 2. It has the
following properties

τ2(Hi,j) ⊂ Ij , for i, j ∈ {1, 2, 3}

and τ2 = τ1 outside the holes.
We define the probabilities that each of the holes will be used by

p
(n)
i,j = h(n)ai,j + o(h(n)), 1 ≤ i, j ≤ 3 ,

where h is such that limn→∞ h(n) = 0 and the matrix A = [ai,j ]1≤i,j≤3 is given by

A =





0 0.3 0.5
0.7 0 0.2
0.1 0.1 0



 .

The position dependent probability of applying the map τ2 is defined by

(22) p
(n)
2 (x) =

∑

i=1,2,3

∑

j 6=i

p
(n)
i,j χHi,j

(x) , x ∈ I.

The probability of applying map τ1 is defined by p
(n)
1 (x) = 1 − p

(n)
2 (x), x ∈ I.

Consider the random map T (n) = {τ1, τ2; p
(n)
1 , p

(n)
2 }. Let µT (n) be its invariant

measure. By the continuity theorem, µT (n) → α1µ1 + α2µ2 + α3µ3 as pi,j → 0,
i 6= j. Since µi(Hi,j) = 1/3 for i 6= j, 1 ≤ i, j ≤ 3, by (20) we have

Q =
1

30





22 3 5
7 21 2
1 1 28



 .

Therefore, the normalized vector α = (α1, α2, α3) = 1
78

(16, 11, 51).

Example 3.

We consider a two dimensional Markov map example with τ1 having 4 ergodic
components. A Maple 12 program with the details of the example is available on
request. We will use the notation of Example 2. The space I is a unit square of
the plane R

2. It is divided into 4 identical subsquares I1, I2, I3, I4 and each of them
is further divided into 9 identical smaller subsquares: I1 = ∪9

i=1Si, I2 = ∪18
i=10Si,

I3 = ∪27
i=19Si, I4 = ∪36

i=28Si, as in figure 6.
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Figure 3. The Markov partition for map τ1 of Example 3.

We define τ1 restricted to each of Ii, i = 1, 2, 3, 4, as the same Markov map trans-
forming each square Sj onto four squares Sk in such a way that the corresponding
adjacency matrix of the map τ1 restricted to Ii is

M =
1

4






















1 1 0 1 1 0 0 0 0

1 1 0 1 1 0 0 0 0

0 1 1 0 1 1 0 0 0

0 0 0 1 1 0 1 1 0

0 0 0 0 1 1 0 1 1

0 1 1 0 1 1 0 0 0

0 0 0 1 1 0 1 1 0

0 1 1 0 1 1 0 0 0

0 1 1 0 1 1 0 0 0






















.

The matrix Mτ1 corresponding to τ1 is the block matrix with 4 matrices M along
the diagonal. The map τ1 has 4 ergodic components. For each component the
normalized acim µi , i = 1, 2, 3, 4, invariant for τ1 restricted to Ii, can be represented
by the vector

[µi(1), µi(2), µi(3), µi(4), µi(5), µi(6), µi(7), µi(8), µi(9)]

= [0.05357, 0.16071, 0.10714, 0.08036, 0.25, 0.16964, 0.02679, 0.08929, 0.0625] .

The squares S6, S8, S13, S17, S20, S24, S29, S31, are designated as holes. We have
S6 = H1,2, S8 = H1,3, S13 = H2,1, S17 = H2,4, S20 = H3,1, S24 = H3,4, S29 = H4,2,
S31 = H4,3. We have µ1(S6) = µ3(S24) = 0.16964, µ1(S8) = µ2(S17) = 0.08929,
µ2(S13) = µ4(S31) = 0.08036, µ3(S20) = µ4(S29) = 0.16071.

We define τ2 to be the Markov map on I which realizes the transfers. On
squares which are not holes it is equal to τ1. On each of the squares which is
a hole τ2 is a linear map transferring this square onto four squares in appro-
priate component Ij . The matrix Mτ1 has most of its rows the same as the
matrix Mτ1 , except for rows 6, 8, 13, 17, 20, 24, 29, 31 which have elements (6, 10),
(6, 11), (6, 13), (6, 14), (8, 19), (8, 20), (8, 22), (8, 23), (13, 5), (13, 6), (13, 8), (13, 9),
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(17, 29), (17, 30), (17, 32), (17, 33), (20, 4), (20, 5), (20, 7), (20, 8), (24, 31), (24, 32),
(24, 34), (24, 35), (29, 14), (29, 15), (29, 17), (29, 18), (31, 20), (31, 21), (31, 23),
(31, 24), equal to 1/4 and all other elements 0.

Let h be such that limn→∞ h(n) = 0. We define the matrix of transfer probabil-
ities between Ii and Ij as

P (n) =
[

p
(n)
i,j

]

1≤i,j≤4
= h(n) ·A , where A =









0 0.4 0.5 0

0.3 0 0 0.8

0.7 0 0 0.5

0 0.6 0.6 0









.

We define position dependent probabilities p
(n)
1 , p

(n)
2 as in (17). The random map

T (n) = {τ1, τ2; p
(n)
1 , p

(n)
2 } has matrix MT (n) with rows the same as the rows of Mτ1

except for rows 6, 8, 13, 17, 20, 24, 29, 31 defined by

row(6, MT (n)) = (1 − p
(n)
1,2 )row(6, Mτ1 ) + p

(n)
1,2 · row(6, Mτ2) ,

row(8, MT (n)) = (1 − p
(n)
1,3 )row(8, Mτ1 ) + p

(n)
1,3 · row(8, Mτ2) ,

row(13, MT (n)) = (1 − p
(n)
2,1 )row(13, Mτ1) + p

(n)
2,1 · row(13, Mτ2) ,

row(17, MT (n)) = (1 − p
(n)
2,4 )row(17, Mτ1) + p

(n)
2,4 · row(17, Mτ2) ,

row(20, MT (n)) = (1 − p
(n)
3,1 )row(20, Mτ1) + p

(n)
3,1 · row(20, Mτ2) ,

row(24, MT (n)) = (1 − p
(n)
3,4 )row(24, Mτ1) + p

(n)
3,4 · row(24, Mτ2) ,

row(29, MT (n)) = (1 − p
(n)
4,2 )row(29, Mτ1) + p

(n)
4,2 · row(29, Mτ2) ,

row(31, MT (n)) = (1 − p
(n)
4,3 )row(31, Mτ1) + p

(n)
4,3 · row(31, Mτ2) .

The T (n)-invariant measure µT (n) has been obtained using Maple. We define the
vector α(n) = [µT (n)(I1), µT (n)(I2), µT (n)(I3), µT (n)(I3)]. Then,

α(n) =
1

126509
[25416, 52668, 14130, 34295]+ O(h(n)) .

The matrix Q is defined as in (20). The left 1-eigenvector of Q is equal to

limn→∞ α(n).
For ε := h(n) close to 0 the matrix corresponding to Frobenius–Perron operator

of T (n) has, except 1, three other eigenvalues close to 1 but different from 1. For
ε = 10−3 they are 0.9997176900 , 0.9998399077 and 0.9998924535. For ε = 10−4

we obtained 0.9999717673, 0.9999839914, 0.9999892419.
Acknowledgment: The authors are grateful to anonymous reviewers for a

detailed and constructive critique of the first version of the paper.

References
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