# Concordia University 

EMAT 233 - Final Exam

## Instructors: Dafni, Dryanov, Enolskii, Keviczky, Kisilevsky, Korotkin, Shnirelman

Course Examiner: M. Bertola
Date: May 2006.
Time allowed: 3 hours.
[10] Problem 1. Compute the curvature $\kappa(t)$ of the curve $\mathcal{C}$ defined by

$$
\vec{r}(t)=t \mathbf{i}+\frac{t^{3}}{3} \mathbf{j}+\frac{t^{2}}{2} \mathbf{k}
$$

[10] Problem 2. Find points on the surface $x^{2}+3 y^{2}+4 z^{2}-2 x y=16$ at which the tangent plane is parallel to the $y z$-plane.
[10] Problem 3. Find the direction in which the function below increases most rapidly at the indicated point. Find also the maximum rate of increase.

$$
f(x, y)=\mathrm{e}^{2 x} \sin (2 y), \quad P \equiv(0, \pi / 8)
$$

[10] Problem 4. The D'Alambert equation

$$
\frac{\partial^{2}}{\partial t^{2}} U(t, x, y)-\frac{\partial^{2}}{\partial x^{2}} U(t, x, y)-\frac{\partial^{2}}{\partial y^{2}} U(t, x, y)=0 .
$$

describes the propagation of small waves on an elastic membrane. Show that the function defined as

$$
U(t, x, y):=\cos (c t-a x-b y), \quad c=\sqrt{a^{2}+b^{2}}
$$

is a solution of the wave equation for any value of the constants $a, b$ (where $c$ is given by the formula written on the right in the equation above).
[10] Problem 5.

Compute the line integral

$$
\int_{\mathcal{C}}(x+2 y) \mathrm{d} x+(2 x-y) \mathrm{d} y
$$

where $\mathcal{C}$ is the contour indicated in figure starting at $(-4,1)$ and ending at $(-3,-1)$.

[10] Problem 6. Using the appropriate theorem (which you must state), compute the flux of the curl

$$
\iint_{\mathcal{S}} \operatorname{curl}(\vec{F}) \cdot \mathbf{n} \mathrm{d} S
$$

for the vector-field

$$
\vec{F}=y \mathbf{i}-x \mathbf{j}+z \cos \left(z^{3}+\ln \left(1+x^{2}\right)\right) \mathbf{k}
$$

across the upper hemisphere

$$
S:=\left\{x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}
$$

with the normal oriented upwards.
[10] Problem 7. Using the appropriate theorem compute the following line integral in the plane

$$
\oint_{\mathcal{C}} 2 y \mathrm{~d} x+5 x \mathrm{~d} y
$$

where $\mathcal{C}$ is the circle $(x-1)^{2}+(y+3)^{2}=25$ traversed counterclockwise.
[10] Problem 8. Compute the following double integral by reversing the order of integration

$$
\int_{0}^{1} \int_{x}^{1} x^{2} \sqrt{1+y^{4}} \mathrm{~d} y \mathrm{~d} x
$$

[10] Problem 9. Using the appropriate theorem (which you must state) compute the flux of the vector-field

$$
\vec{F}(x, y, z)=\left(x^{2}+3 y+\mathrm{e}^{y z}\right) \mathbf{i}+\left(3 y-x^{2}\right) \mathbf{j}+\left(\ln \left(1+x^{2}+y^{2}\right)+5 z\right) \mathbf{k}
$$

across the surface of the parallelepiped $\{0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 2\}$ with the outwards normal.
[10] Problem 10. Evaluate the following integral by changing it to polar coordinates

$$
\int_{0}^{\sqrt{2} / 2} \int_{y}^{\sqrt{1-y^{2}}} \frac{y^{2}}{\sqrt{x^{2}+y^{2}}} \mathrm{~d} x \mathrm{~d} y
$$

