Concordia University

Department of Mathematics and Statistics

Course	Number	Section	
EMAT	$233 / 2$	Q	
Examination	Date	Time	Pages
Winter	December 2002	3 hours	2
Instructors			Course Examiner
Bertola, Keviczky		C. David	
Special instructions			
Answer all questions:	NO CALCULATORS ALLOWED		

[10] Problem 1. Compute the curvature $\kappa(t)$ of the curve \mathcal{C} defined by

$$
\vec{r}(t)=t \mathbf{i}+\frac{t^{2}}{2} \mathbf{j}+\frac{t^{3}}{3} \mathbf{k}
$$

[10] Problem 2. Consider the surface defined by

$$
\cos (z x) \mathrm{e}^{y}=1
$$

(a) Find the equation of the tangent plane to the surface at the point $(\pi, 0,0)$
(b) Find the equation of the normal line to the surface at the point $(\pi, 0,0)$
[10] Problem 3. Consider the function

$$
G(x, y)=x^{2}-\cos (y x)
$$

with $x=x(u, v)=u^{2}+v^{2}$ and $y=y(u, v)=u v$. Compute the partial derivatives $\frac{\partial G}{\partial u}$ and $\frac{\partial G}{\partial v}$. The answer must be expressed in terms of u, v only.
[10] Problem 4. Consider the equation (D'Alambert equation):

$$
\frac{\partial^{2}}{\partial t^{2}} U(t, x)-\frac{\partial^{2}}{\partial x^{2}} U(t, x)=0
$$

(a) Prove that $U(t, x)=\mathrm{e}^{x-t}$ is a solution.
(b) Prove that if $f(s)$ is a twice-differentiable function (i.e. the second derivative exists and it is continuous) then the two functions

$$
U_{(+)}(t, x)=f(x+t), \quad U_{(-)}(t, x)=f(x-t)
$$

solve D'Alambert equation for both choices of the signs.
[10] Problem 5.

Consider the vector field

$$
\vec{F}(x, y, z)=\left(2 x y+y z+\frac{2 x}{1+x^{2}}\right) \mathbf{i}+\left(x^{2}+x z\right) \mathbf{j}+\left(x y+z^{2}\right) \mathbf{k}
$$

(a) Show that $\operatorname{curl}(\vec{F})=\overrightarrow{0}$. Can you find a function $\Phi(x, y, z)$ such that $\vec{F}(x, y, z)=$ $\vec{\nabla} \Phi(x, y, z)$? If yes then find the most general such function.
(b) Compute the line integral

$$
\int_{\mathcal{C}} \vec{F} \cdot \mathrm{~d} \vec{r}
$$

where the curve \mathcal{C} is the piecewise smooth curve starting at $A \equiv(0,0,0)$ and ending at $B \equiv(0,0,1)$ consisting of the spiral $\vec{r}(t)=\langle t \cos (t), t \sin (t), t\rangle$ for $t \in[0,2 \pi]$ joined to the segment starting from $(2 \pi, 0,2 \pi)$ and arriving at $B \equiv(0,0,1)$.

[10] Problem 6.

Consider the vector field

$$
\vec{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+\left(x^{2} z^{3} \cos \left(x^{2}+y^{2}+z^{2}\right)\right) \mathbf{k} .
$$

Compute the flux of $\operatorname{curl}(\vec{F})$

$$
\iint_{\mathcal{S}} \operatorname{curl}(\vec{F}) \cdot \mathbf{n} \mathrm{d} S
$$

through the surface \mathcal{S} consisting of a cylinder with a hemisphere on top oriented with the outward normal

$$
\left\{x^{2}+y^{2}=1, z \in[0,2]\right\} \cup\left\{x^{2}+y^{2}+(z-2)^{2}=1, z \geq 2\right\},
$$

and with a boundary consisting of the circle at the base of the cylinder. Whatever answer you find motivate it by using the appropriate theorem.

[10] Problem 7. Using the appropriate theorem, compute the following line integral in the plane

$$
\oint_{\mathcal{C}}(5 y+\ln (4+\cos (x))) \mathrm{d} x+\left(2 x^{2} y-\mathrm{e}^{\sin (y)}\right) \mathrm{d} y
$$

where \mathcal{C} is the piecewise smooth closed simple curve oriented counterclockwise given by the boundary of the rectangle of vertices $(0,0),(2,0),(2,1)$ and $(0,1)$.

[10] Problem 8.

Evaluate the surface integral

$$
\iint_{\mathcal{S}} x y(9-4 z) \mathrm{d} S
$$

where \mathcal{S} is the the portion of the parabolic cylinder $z=2-x^{2}$ in the first octant and bounded by $x=0, y=0, y=4, z=0$.

[10] Problem 9. Use the Divergence Theorem to compute the flux of the vector

$$
\vec{F}(x, y, z)=\left(4 x+\cos \left(y^{2}+z^{2}\right)\right) \mathbf{i}+\left(\mathrm{e}^{x^{2} z^{4}}-2 y+\ln \left(1+z^{2}\right)\right) \mathbf{j}+\left(\cos \left(\ln \left(1+x^{2}+y^{4}\right)\right)\right) \mathbf{k}
$$

through the surface of the sphere of center $(1,1,1)$ and radius $R=2$ ouriented with the outward normal.
[Formulas you may find useful: (Area of the sphere of radius R) $=4 \pi R^{2}$: (Volume of the sphere of radius R) $=\frac{4 \pi}{3} R^{3}$.]
[10] Problem 10. Evaluate the following double integral via polar coordinates

$$
\iint_{\mathcal{R}} x \mathrm{e}^{-\sqrt{x^{2}+y^{2}}} \mathrm{~d} A
$$

where \mathcal{R} is the left semi-disk of radius 2 :

$$
\mathcal{R}=\left\{(x, y): x^{2}+y^{2} \leq 4 ; x \geq 0\right\} .
$$

