Midterm Exam Emat 233, March 182005

Special instructions: solve five problems of your choice
[10 points] Problem 1. Evaluate the following integral by reversing the order of integration

$$
\int_{0}^{2} \int_{y^{2}}^{4} \cos \left(\sqrt{x^{3}}\right) \mathrm{d} x \mathrm{~d} y
$$

[10 points] Problem 2. Consider the vector field in 2-dimensions

$$
\vec{F}(x, y)=\left(x \mathrm{e}^{-x}+2 x y\right) \mathbf{i}+\left(y+x^{2}\right) \mathbf{j} .
$$

Compute the line integral of \vec{F} along the curve \mathcal{C} in the picture. Motivate your answer if necessary.

Solution to Problem 2. The contour is rather complicated so I would suspect a shortcut to exist. Indeed we check that the integral is independent of the path

$$
\begin{array}{r}
\partial_{y}\left(x \mathrm{e}^{-x}+2 x y\right)=2 x \\
\partial_{x}\left(y+x^{2}\right)=2 x \quad \text { OK. }
\end{array}
$$

So we look for the potential ϕ.

$$
\phi=\int\left(x \mathrm{e}^{-x}+2 x y\right) \mathrm{d} x=-x \mathrm{e}^{-x}+\int \mathrm{e}^{-x} \mathrm{~d} x+x^{2} y+h(y)=-x \mathrm{e}^{-x}-\mathrm{e}^{-x}+x^{2} y+h(y)
$$

Then

$$
\partial_{y} \phi=x^{2}+h^{\prime}(y)=x^{2}+y \Rightarrow h^{\prime}(y)=y \Rightarrow h=\frac{y^{2}}{2}+C
$$

Thus a suitable potential is

$$
\phi(x, y)=-x \mathrm{e}^{-x}-\mathrm{e}^{-x}+x^{2} y+\frac{y^{2}}{2}
$$

The integral then evaluates to

$$
\left.\phi(x, y)\right|_{(0,0)} ^{(-3,1)}=\phi(-3,1)-\phi(0,0)=2 \mathrm{e}^{3}+9+\frac{1}{2}+1=2 \mathrm{e}^{3}+\frac{21}{2}
$$

[10 points] Problem 3. By using the appropriate theorem (which must be named) compute the circulation $\oint_{\mathcal{C}} \vec{F} \cdot \mathrm{~d} \vec{r}$ of the vector field

$$
\vec{F}(x, y)=\left(3 y-\mathrm{e}^{-x^{2}}\right) \mathbf{i}+\left(5 x+\ln \left(3+\cos ^{2}\left(y^{45}\right)\right)\right) \mathbf{j}
$$

around the curve \mathcal{C} given by the circle of radius 2 and center $(3,2)$ oriented counterclockwise.

Solution to Problem 3. The theorem is Green's theorem. So we have

$$
\begin{array}{r}
\oint_{\mathcal{C}}\left(3 y-\mathrm{e}^{-x^{2}}\right) \mathrm{d} x+\left(5 x+\ln \left(3+\cos ^{2}\left(y^{45}\right)\right)\right) \mathrm{d} y= \\
=\iint_{\mathcal{R}}\left[\partial_{x}\left(5 x+\ln \left(3+\cos ^{2}\left(y^{45}\right)\right)\right)-\partial_{y}\left(3 y-\mathrm{e}^{-x^{2}}\right)\right] \mathrm{d} A=\iint_{\mathcal{R}}(5-3) \mathrm{d} A=2 \iint_{\mathcal{R}} \mathrm{d} A
\end{array}
$$

The area of the circle is $\pi r^{2}=4 \pi$ so we have

$$
2 \iint_{\mathcal{R}} \mathrm{d} A=8 \pi
$$

[10 points] Problem 4.

Compute the double integral

$$
\iint_{\mathcal{R}} \mathrm{e}^{-x^{2}-y^{2}} \mathrm{~d} A
$$

over the region consisting of the half washer in the picture with inner radius 1 and outer

Solution to Problem 4. The shape of the region suggests passing to polar coordinates, in which the integral reads

$$
\int_{0}^{\pi} \mathrm{d} \theta \int_{1}^{2} \mathrm{e}^{-r^{2}} r \mathrm{~d} r=\left.\frac{\pi}{2} \mathrm{e}^{-r^{2}}\right|_{1} ^{2}=\frac{\pi}{2}\left(\mathrm{e}^{-4}-\mathrm{e}^{-1}\right)
$$

[10 points] Problem 5.

Compute the flux of the vector field

$$
\vec{F}(x, y, z)=(3 y z) \mathbf{i}+\ln \left(1+x^{2} y^{2} z^{2}\right) \mathbf{j}+z \mathbf{k}
$$

across the "roof" surface \mathcal{S} shown in the picture and described hereafter which is the union of portion of two planes, oriented upwards

$$
\begin{gathered}
z=2+x, \quad-1 \leq x \leq 0, \quad 0 \leq y \leq 1 \\
z=2-x, \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1
\end{gathered}
$$

Solution to Problem 5. The normal of the first portion of plane is

$$
\mathbf{n}_{1}=\frac{1}{\sqrt{2}}(-\mathbf{i}+\mathbf{k})
$$

and the element of area is

$$
\mathrm{d} S_{1}=\sqrt{1+1} \mathrm{~d} A=\sqrt{2} \mathrm{~d} A
$$

Hence we have

$$
\begin{array}{r}
\iint_{\mathcal{S}_{1}} \frac{(-3 y z+z)}{\sqrt{2}} \mathrm{~d} S_{1}=\iint_{\mathcal{R}_{1}}(2+x)(1-3 y) \mathrm{d} x \mathrm{~d} y= \\
=\int_{0}^{1} \int_{-1}^{0}(2+x)(1-3 y) \mathrm{d} x \mathrm{~d} y=\left.\int_{0}^{1}(1-3 y)\left(2 x+\frac{x^{2}}{2}\right)\right|_{-1} ^{0}=\int_{0}^{1}(1-3 y) \frac{3}{2}=\left.\frac{3}{2}\left(y-\frac{3}{2} y^{2}\right)\right|_{0} ^{1}=-\frac{3}{2} \frac{1}{2}=-\frac{3}{4}
\end{array}
$$

For the second surface we have

$$
\mathbf{n}_{2}=\frac{1}{\sqrt{2}}(\mathbf{i}+\mathbf{k})
$$

and the element of area is

$$
\mathrm{d} S_{2}=\sqrt{1+1} \mathrm{~d} A=\sqrt{2} \mathrm{~d} A
$$

Hence we have

$$
\begin{array}{r}
\iint_{\mathcal{S}_{2}} \frac{(3 y z+z)}{\sqrt{2}} \mathrm{~d} S_{1}=\iint_{\mathcal{R}_{2}}(2-x)(1+3 y) \mathrm{d} x \mathrm{~d} y= \\
=\int_{0}^{1} \int_{0}^{1}(2-x)(1+3 y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1}(2-x) \mathrm{d} x \int_{0}^{1}(1+3 y) \mathrm{d} y=\left.\left.\left(2 x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}\left(y+\frac{3}{2} y^{2}\right)\right|_{0} ^{1}=\frac{15}{4}
\end{array}
$$

The total flux is thus

$$
-\frac{3}{4}+\frac{15}{4}=3
$$

[10 points] Problem 6 Evaluate the following integral by using polar coordinates

$$
\int_{-\sqrt{\pi}}^{\sqrt{\pi}} \int_{0}^{\sqrt{\pi-x^{2}}} \sin \left(x^{2}+y^{2}\right) \mathrm{d} y \mathrm{~d} x
$$

Solution to Problem 6. The region is the upper semidisk of radius $\sqrt{\pi}$ and hence we have

$$
\int_{0}^{\pi} \mathrm{d} \theta \int_{0}^{\sqrt{\pi}} \sin \left(r^{2}\right) r \mathrm{~d} r=\frac{\pi}{2} \int_{0}^{\sqrt{\pi}} \sin \left(r^{2}\right) \mathrm{d} r^{2}=-\left.\frac{\pi}{2} \cos \left(r^{2}\right)\right|_{0} ^{\sqrt{\pi}}=-\frac{\pi}{2}(\cos (\pi)-\cos (0))=\pi
$$

