Instructor: Dr. Marco Bertola

Material allowed: non programmable, non-graphing calculators.

Solve five problems of your choice

Self-serve formula sheet. For a vector-valued functions $\vec{r}(t)$ in three dimension defining a smooth curve for $t \in[a, b]$

$\kappa(t)=$	$a_{T}(t)=$	$s(t)=$	$\vec{T}(t)=$	$a_{N}(t)=$	$N(t)=$	$\vec{B}(t)=$

$\frac{\left\|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|}$
(a)

(b)
$\int_{a}^{t}\left\|\vec{r}^{\prime}(\tau)\right\| \mathrm{d} \tau$
(c)
$\frac{\left\|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|^{3}}$
(d)

(e)

(f)
$\frac{\vec{r}^{\prime}(t) \cdot \vec{r}^{\prime \prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}$
(g)
[10 points] Problem 1.
(i) Find the velocity and the acceleration vectors $\vec{v}(t), \vec{a}(t)$ for a particle that moves as described by the vector-valued function

$$
\vec{r}(t)=t \mathbf{i}+[t \sin (t)+\cos (t)] \mathbf{j}+[t \cos (t)-\sin (t)] \mathbf{k} .
$$

(ii) Compute the unit tangent $\vec{T}(t)$.
(iii) Compute the tangent component of the acceleration a_{T}.
[10 points] Problem 2.
Using the chain rule, compute the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ for the function f

$$
f(u, v)=\cos (u v),
$$

where the variables u, v depend on the variables x, y as follows

$$
u=\ln \left(1+x^{2}\right) ; \quad v=x^{2} y .
$$

[10 points] Problem 3.

For the given curve find the arclength parameter $s(t)$ and reparametrize the curve in terms of it

$$
\vec{r}(t)=t^{2} \mathbf{i}+[t \sin (t)+\cos (t)] \mathbf{j}+[t \cos (t)-\sin (t)] \mathbf{k}, \quad t \geq 0 .
$$

[Advice: the ensuing integral is immediate if your derivatives are done properly]
[10 points] Problem 4.
(i) Compute the gradient of the function

$$
F(x, y, z)=x y^{2} \cos (y z) .
$$

(ii) Find a direction along which the function F increases as fast as possible at the point $(0,1, \pi)$.
(iii) Compute the directional derivative at the point $(0,1, \pi)$ along the direction of the vector $\vec{u}=\frac{1}{\sqrt{2}} \mathbf{j}+\frac{1}{\sqrt{2}} \mathbf{k}$.
[10 points] Problem 5.
Find points on the surface $x^{2}+3 y^{2}+4 z^{2}-2 x y=16$ at which the tangent plane is parallel to the $z x$-plane.

[10 points] Problem 6.

Compute the divergence of the gradient of the following function of three variables

$$
F(x, y, z)=x^{2} y z-\frac{1}{3} y^{3} z+z^{2}
$$

Solution to Problem 1

We have

$$
\begin{aligned}
& \vec{v}(t)=\mathbf{i}+t \cos (t) \mathbf{j}-t \sin (t) \mathbf{k} \\
& \vec{a}(t)=(\cos (t)-t \sin (t)) \mathbf{j}+(-t \cos (t)-\sin (t)) \mathbf{k} \\
& \vec{T}=\frac{\vec{v}}{v}=\frac{1}{\sqrt{1+t^{2}}}(\mathbf{i}+t \cos (t) \mathbf{j}-t \sin (t) \mathbf{k})
\end{aligned}
$$

The tangent component is

$$
a_{T}(t)=\vec{T} \cdot \vec{a}=\frac{t \cos ^{2}(t)-t^{2} \sin (t) \cos (t)+t \sin ^{2}(t)+t^{2} \sin (t) \cos (t)}{\sqrt{1+t^{2}}}=\frac{t}{\sqrt{1+t^{2}}}
$$

Solution to Problem 2

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{\partial f}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial x}= \\
& =-v \sin (u v) \frac{2 x}{1+x^{2}}-u \sin (u v) 2 x y=-\sin \left(x^{2} y \ln \left(1+x^{2}\right)\right)\left(\frac{2 x^{3} y}{1+x^{2}}+2 x y \ln \left(1+x^{2}\right)\right) \\
\frac{\partial f}{\partial y} & =\frac{\partial f}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial y}= \\
& =-v \sin (u v) 0-u \sin (u v) x^{2}=-\sin \left(x^{2} y \ln \left(1+x^{2}\right)\right) \ln \left(1+x^{2}\right) x^{2}
\end{aligned}
$$

Solution to Problem 3

The arclength parameter is

$$
s(t)=\int_{0}^{t} v(\tau) \mathrm{d} \tau
$$

Here the speed $v(\tau)$ is

$$
\begin{aligned}
& \vec{v}(\tau)=2 \tau \mathbf{i}+\tau \cos (\tau) \mathbf{j}-\tau \sin (\tau) \mathbf{k} \\
& v(\tau)=\sqrt{4 \tau^{2}+\tau^{2} \cos ^{2}(\tau)+\tau^{2} \sin ^{2}(\tau)}=\sqrt{5 \tau^{2}}=\tau \sqrt{5} \quad(\text { since } \tau \geq 0)
\end{aligned}
$$

Therefore

$$
s(t)=\int_{0}^{t} \tau \sqrt{5} \mathrm{~d} \tau=\frac{\sqrt{5}}{2} t^{2}
$$

To reparametrize the curve we have to express t in terms of s. Solving the above relation for t we have

$$
t(s)=\sqrt{\frac{2}{\sqrt{5}} s}
$$

We now plug this into the expression for $\vec{r}(t)$

$$
\frac{2}{\sqrt{5}} s \mathbf{i}+\left[\sqrt{\frac{2}{\sqrt{5}}} s \sin \left(\sqrt{\frac{2}{\sqrt{5}}} s\right)+\cos \left(\sqrt{\frac{2}{\sqrt{5}}} s\right)\right] \mathbf{j}+\left[\sqrt{\frac{2}{\sqrt{5}}} s \cos \left(\sqrt{\frac{2}{\sqrt{5}}} s\right)-\sin \left(\sqrt{\frac{2}{\sqrt{5}}} s\right)\right] \mathbf{k}
$$

Solution to problem 4

We have

$$
\vec{\nabla} F(x, y, z)=y^{2} \cos (y z) \mathbf{i}+\left(2 x y \cos (y z)-x y^{2} z \sin (y z)\right) \mathbf{j}-x y^{3} \sin (y z) \mathbf{k}
$$

At the point $(0,1, \pi)$ the gradient is

$$
\vec{\nabla} F(0,1, \pi)=\cos (\pi) \mathbf{i}=-\mathbf{i}
$$

Since it is already normalized (length one) the direction of max increase at this point is $\mathbf{- i}$ (the gradient itself). To compute the directional derivative along $\vec{u}=\frac{1}{\sqrt{2}}(\mathbf{j}+\mathbf{k})$ we have to compute

$$
\left.D_{\vec{u}} F\right|_{(0,1, \pi)}=\vec{\nabla} F(0,1, \pi) \cdot \vec{u}=(-\mathbf{i}) \cdot\left(\frac{1}{\sqrt{2}}(\mathbf{j}+\mathbf{k})\right)=0
$$

Solution to Problem 5

For a plane to be parallel to the $x z$-plane it is necessary that the normal is -say- \mathbf{j} (y-direction). That is the gradient of the function defining the surface must be parallel to \mathbf{j} or equivalently must have zero components in the x and z direction. The gradient is

$$
\vec{\nabla} F=(2 x-2 y) \mathbf{i}+(6 y-2 x) \mathbf{j}+8 z \mathbf{k}
$$

Therefore we have to solve the system

$$
\left\{\begin{array} { l }
{ 2 x - 2 y = 0 } \\
{ 8 z = 0 } \\
{ x ^ { 2 } + 3 y ^ { 2 } + 4 z ^ { 2 } - 2 x y = 1 6 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=y \\
z=0 \\
4 x^{2}-2 x^{2}=16 \Rightarrow x= \pm \sqrt{8}
\end{array}\right.\right.
$$

There are thus two points as required, namely $(\sqrt{8}, \sqrt{8}, 0)$ and $(-\sqrt{8},-\sqrt{8}, 0)$.

Solution to Problem 6

The gradient is

$$
\vec{\nabla} F(x, y, z)=2 x y z \mathbf{i}-y^{2} z \mathbf{j}+\left(x^{2} y-\frac{1}{3} y^{3}+2 z\right) \mathbf{k}
$$

The divergence of the gradient is

$$
\vec{\nabla} \cdot \vec{\nabla} F=\partial_{x}\left(\partial_{x} F\right)+\partial_{y}\left(\partial_{y} F\right)+\partial_{z}\left(\partial_{z} F\right)=2 y z-2 y z+2=2
$$

Note that the end-result is a scalar

