Midterm Exam Emat 213

March 2006

The best four problems will be marked
[10 points] Problem 1. Find the general solution (complementary + particular) of the linear ODE (for y_{p} use the method of Undetermined Coefficients)

$$
y^{(7)}-6 y^{(6)}+14 y^{(5)}-20 y^{(4)}+25 y^{\prime \prime \prime}-22 y^{\prime \prime}+12 y^{\prime}-8 y=x^{2}
$$

You may find this useful:

$$
m^{7}-6 m^{6}+14 m^{5}-20 m^{4}+25 m^{3}-22 m^{2}+12 m-8=(m-2)^{3}(m+i)^{2}(m-i)^{2}
$$

Solution From the multiplicities of the roots

$$
y_{c}=\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{2 x}+\left(c_{4}+c_{5} x\right) \cos (x)+\left(c_{6}+c_{7} x\right) \sin (x)
$$

For y_{p} we use "Undetermined Coefficients"

$$
\begin{gathered}
y_{p}=A x^{2}+B x+C \\
y_{p}^{\prime}=2 A x+B \\
y_{p}^{\prime \prime}=2 A \\
y_{p}^{\prime \prime \prime}=\ldots=0 \\
-44 A+24 A x+12 B-8 A x^{2}-8 B x-8 C=x^{2} \\
A=-\frac{1}{8} \\
-3-8 B=0 \Rightarrow B=-\frac{3}{8} \\
\frac{44}{8}-\frac{36}{8}-8 C=0 \Rightarrow C=\frac{1}{8}
\end{gathered}
$$

[10 points] Problem 2. Find the general solution (complementary + particular) of the linear ODE

$$
y^{\prime \prime}-y^{\prime}+\frac{1}{4} y=3+\mathrm{e}^{x}
$$

[Hint: for y_{p} you can use variation of parameters or undetermined coefficients, the latter is faster but it's your choice].

Solution

$$
\begin{array}{r}
m^{2}-m+\frac{1}{4}=(m-1 / 2)^{2} \\
y_{c}=\left(c_{1}+x c_{2}\right) \mathrm{e}^{-x / 2} \\
y_{p}=A+B e^{x} \\
\left(B-B+\frac{1}{4} B\right) e^{x}+\frac{A}{4}=3+e^{x} \\
B=4, A=12 \\
y=\left(c_{1}+x c_{2}\right) \mathrm{e}^{-x / 2}+4 e^{x}+12
\end{array}
$$

[10 points] Problem 3.
Solve the following nonlinear second order ODE by the substitution $u=y^{\prime} u \frac{\mathrm{~d} u}{\mathrm{~d} y}=y^{\prime \prime}$

$$
y^{\prime \prime}+2 y\left(y^{\prime}\right)^{3}=0
$$

Solution: problem 7 pag. 146.
[10 points] Problem 4.
When a mass of 2 Kilograms is attached to a spring whose constant is $32 \mathrm{~N} / \mathrm{mm}$, it comes to rest in the equilibrium position. Starting at $t=0$, a force equal to $F_{\text {ext }}(t)=\mathrm{e}^{-2 t}$ is applied to the system. Find the equation of motion in absence of damping.

Solution

$$
\begin{array}{r}
2 x^{\prime \prime}+32 x=e^{-2 t} \\
x(0)=0, x^{\prime}(0)=0 \\
x_{c}(t)=c_{1} \cos (4 t)+c_{2} \sin (4 t) \\
x_{p}=A e^{-2 t} \\
8 A+32 A=1 \\
A=\frac{1}{40} \\
x(t)=c_{1} \cos (4 t)+c_{2} \sin (4 t)+\frac{1}{40} e^{-2 t} \\
x(0)=c_{1}+\frac{1}{40}=0 \Rightarrow c_{1}=-\frac{1}{4} 0 \\
x^{\prime}(0)=4 c_{2}-\frac{1}{20}=0 \Rightarrow c_{2}=\frac{1}{80}
\end{array}
$$

So the solution of the motion is

$$
x(t)=-\frac{1}{40} \cos (4 t)+\frac{1}{80} \sin (4 t)+\frac{1}{40} e^{-2 t}
$$

[10points] Problem 5.
Solve the eigenvalue problem for the CE equation below with the prescribed boundary value conditions

$$
\begin{aligned}
x^{2} y^{\prime \prime}+x y^{\prime}+\lambda y & =0 \\
y^{\prime}(1)=0, \quad y^{\prime}\left(\mathrm{e}^{2}\right) & =0
\end{aligned}
$$

Solution: problem 21 pag. 169 from the book.
[10 pts] Problem 6.
Using the method of variation of parameters find the general solution (complementary + particular) of the ODE

$$
2 y^{\prime \prime}+2 y^{\prime}+y=4 \sqrt{x} \quad(x>0)
$$

Note: the antiderivatives for u_{1}, u_{2} are transcendental (cannot be computed explicitly). Leave them indicated.

Solution Problem 16 pag. 136.

