Midterm Exam Emat 213

February 2006
Instructor: Dr. Marco Bertola
Time allowed: 1h15min.
Material allowed: calculators.
Recommendations: use only blue or black ink

Solve fOUr problems: the top score is 40 points Clearly indicate which problems you wish marked

[10 points] Problem 1.

Find the general solution of the following separable ODE

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(y^{2}+1\right)^{\frac{2}{3}}}{y} x^{2}
$$

Solution

$$
\begin{aligned}
\int \frac{y}{\left(y^{2}+1\right)^{\frac{2}{3}}} \mathrm{~d} y & =\int x^{2} d x \\
\frac{3}{2}\left(y^{2}+1\right)^{\frac{1}{3}} & =\frac{x^{3}}{3}+C
\end{aligned}
$$

[10 points] Problem 2.

Determine which of the following ODE's is exact and then solve it (in implicit form).
(a) $\left(x^{2}+y^{2}+\mathrm{e}^{y+x}\right) \mathrm{d} x-\left(\mathrm{e}^{y+x}+y^{3}\right) \mathrm{d} y=0$
(b) $\left(2 x-4 \mathrm{e}^{2 x+3 y}\right) \mathrm{d} x+\left(3 y^{2}-6 \mathrm{e}^{2 x+3 y}\right) \mathrm{d} y=0$

Solution (just answer)
The second is exact (because the cross derivatives match). The solution reads (implicitly)

$$
x^{2}-2 \mathrm{e}^{2 x+3 y}+y^{3}=C
$$

[10 points] Problem 3.

(i) Which of the following two first order equations is linear? Explain why the other is not linear
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(1+\frac{2}{x}\right) y=\frac{\mathrm{e}^{-x}}{x^{2}}$
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}-x=\cos (y)$
(ii) Find the general solution of the linear equation that you have found above.

Solution
The second is nonlinear because the unknown function y is precomposed with cos.

The solution of the linear one is

$$
y=\frac{C}{x^{2}} \mathrm{e}^{-x}+\frac{\mathrm{e}^{-x}}{x}
$$

[10 points] Problem 4.

Perform the substitution $u=y^{-1}$ in the following Bernoulli ODE so as to obtain a new linear ODE in the dependent variable u and find the general solution in term of y

$$
x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}-x y=y^{2}
$$

Solution

$$
\begin{array}{r}
y=\frac{1}{u} \quad ; y^{\prime}=-\frac{u^{\prime}}{u^{2}} \\
-x^{2} \frac{u^{\prime}}{u^{2}}-\frac{x}{u}=\frac{1}{u^{2}} \\
u^{\prime}+\frac{1}{x} u=-\frac{1}{x^{2}} \\
u_{c}=\frac{C}{x} \\
u_{p}=-\frac{1}{x} \int x \frac{1}{x^{2}} d x=-\frac{\ln |x|}{x} \\
u=\frac{C}{x}-\frac{\ln |x|}{x} \\
y=\frac{1}{\frac{C}{x}-\frac{\ln |x|}{x}}=\frac{x}{C-\ln |x|}
\end{array}
$$

[10 points] Problem 5.

A cake is removed from an oven at a temperature of 150 degrees (Celsius) and left to cool down on a countertop in a room at a temperature of 20 degrees. After 2 minutes the temperature of the cake is 120 degrees. After how many minutes (approximately) the cake's temperature will have dropped to 40 degrees?

Solution

The equation of Newton says

$$
T(t)=C \mathrm{e}^{-k t}+T_{e n v}
$$

We have

$$
\begin{array}{r}
T_{\text {env }}=20 ; \quad T(0)=150 \Longrightarrow C+20=150 ; C=130 \\
T(2)=120 \Longrightarrow 130 \mathrm{e}^{-2 k}=100 \\
k=-\frac{1}{2} \ln \left(\frac{10}{13}\right)
\end{array}
$$

The solution is obtained by solving for t the following equation

$$
T(t)=40
$$

$$
\begin{array}{r}
130 \exp \left(\frac{1}{2} \ln \left(\frac{10}{13}\right) t\right)+20=40 \\
t=2 \frac{\ln \left(\frac{2}{13}\right)}{\ln \left(\frac{10}{13}\right)} \simeq 14.25 \mathrm{mins}
\end{array}
$$

[10 points] Problem 6.

Solve the following equation by using a substitution of the form $u=A x+B y+C$

$$
y^{\prime}=(-2 x+y)^{2}-7
$$

Solution

$$
\begin{aligned}
& u=-2 x+y \\
& y=u+2 x \\
& y^{\prime}=u^{\prime}+2 \\
& u^{\prime}+2=u^{2}-7 \\
& u^{\prime}=u^{2}-9 \\
& \int \frac{d u}{u^{2}-9}=\int d x=x+C \\
& \frac{1}{6} \ln \left|\frac{u-3}{u+3}\right|=x+C
\end{aligned}
$$

(by partial fraction expansion)

$$
\begin{aligned}
\frac{u-3}{u+3} & =\tilde{C} \mathrm{e}^{6 x} \\
\frac{y-2 x-3}{y-2 x+3} & =\tilde{C} \mathrm{e}^{6 x}
\end{aligned}
$$

