
Midterm Exam Emat 213
February 2006

Instructor: Dr. Marco Bertola

Time allowed: 1h15min.

Material allowed: calculators.

Recommendations: use only blue or black ink

Solve four problems: the top score is 40 points
Clearly indicate which problems you wish marked

[10 points] Problem 1.
Find the general solution of the following separable ODE
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[10 points] Problem 2.
Determine which of the following ODE’s is exact and then solve it (in implicit form).

(a) (x2 + y2 + ey+x)dx −
(

ey+x + y3
)

dy = 0

(b)
(
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dx +
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3y2 − 6e2x+3y
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dy = 0

Solution (just answer)
The second is exact (because the cross derivatives match). The solution reads (implicitly)

x2 − 2e2x+3y + y3 = C

[10 points] Problem 3.
(i) Which of the following two first order equations is linear? Explain why the other is not linear
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(ii) Find the general solution of the linear equation that you have found above.
Solution

The second is nonlinear because the unknown function y is precomposed with cos.
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[10 points] Problem 4.
Perform the substitution u = y−1 in the following Bernoulli ODE so as to obtain a new linear ODE in the
dependent variable u and find the general solution in term of y
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[10 points] Problem 5.
A cake is removed from an oven at a temperature of 150 degrees (Celsius) and left to cool down on a countertop
in a room at a temperature of 20 degrees. After 2 minutes the temperature of the cake is 120 degrees. After
how many minutes (approximately) the cake’s temperature will have dropped to 40 degrees?

Solution
The equation of Newton says

T (t) = Ce−kt + Tenv

We have

Tenv = 20 ; T (0) = 150 =⇒ C + 20 = 150 ; C = 130;

T (2) = 120 =⇒ 130e−2k = 100
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The solution is obtained by solving for t the following equation

T (t) = 40
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[10 points] Problem 6.
Solve the following equation by using a substitution of the form u = Ax + By + C

y′ = (−2x + y)2 − 7

Solution

u = −2x + y

y = u + 2x

y′ = u′ + 2

u′ + 2 = u2 − 7

u′ = u2 − 9
∫
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(by partial fraction expansion ....)

u − 3

u + 3
= C̃e6x

y − 2x − 3

y − 2x + 3
= C̃e6x


