Midterm Exam Emat 213

November 2005
Marked out of 36

[10 points] Problem 1.

Write the general solution of the following linear ODEs
(a) $y^{(5)}-y^{(4)}-y^{\prime \prime \prime}-y^{\prime \prime}+4 y^{\prime}-2 y=0$
(b) $x^{4} y^{\prime \prime \prime \prime}+\frac{1}{2} x^{2} y^{\prime \prime}+\frac{1}{2} x y^{\prime}-2 y=0$

You may find this useful:

$$
\begin{aligned}
& m(m-1)(m-2)(m-3)+\frac{1}{2} m(m-1)+\frac{1}{2} m-2=(m-2)^{2}\left(m^{2}-2 m-\frac{1}{2}\right) \\
& m^{5}-m^{4}-m^{3}-m^{2}+4 m-2=(m-1)^{3}(m+1-i)(m+1+i)
\end{aligned}
$$

Solution

For (a) the second hint gives the factorization of the auxiliary equation. The roots are $m=1$ with multiplicity 3 and $-1 \pm i$. Therefore the complementary solution is

$$
y_{c}=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+c_{3} x^{2} \mathrm{e}^{x}+c_{4} \mathrm{e}^{-x} \cos (x)+c_{5} \mathrm{e}^{-x} \sin (x)
$$

For (b) the first hint gives almost the factorization of the auxiliary equation: the quadratic polynomial has roots

$$
m^{2}-2 m-\frac{1}{2}=0 \quad m_{1,2}=1 \pm \sqrt{1+\frac{1}{2}}=1 \pm \sqrt{6} / 2
$$

Therefore

$$
y_{c}=c_{1} x^{2}+c_{2} x^{2} \ln (x)+c_{3} x^{1+\sqrt{6} / 2}+c_{4} x^{1-\sqrt{6} / 2}
$$

[10 points] Problem 2.
Consider the linear ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=25 \cos (x)
$$

(i) Find the complementary solution y_{c} (i.e. the general solution of the associated homogeneous equation).
(ii) Find a particular solution y_{p} (hint: Undetermined coefficients or Variation of Parameters (whichever)).
(iii) Use the above information to find the solution for the IVP

$$
\begin{aligned}
& y^{\prime \prime}-4 y^{\prime}+4 y=25 \cos (x) \\
& y(0)=0, y^{\prime}(0)=0
\end{aligned}
$$

Solution

Complementary: the aux. eq.

$$
m^{2}-4 m+4=(m-2)^{2}
$$

Hence

$$
y_{c}=c_{1} \mathrm{e}^{2 x}+c_{2} x \mathrm{e}^{2 x}
$$

Particular: we use the Ansatz

$$
\begin{aligned}
y_{p} & =A \cos (x)+B \sin (x) \\
y_{p}^{\prime} & =-A \sin (x)+B \cos (x) \\
y_{p}^{\prime \prime} & =-A \cos (x)-B \sin (x) .
\end{aligned}
$$

Plugging into the equation we get

$$
\begin{aligned}
& -A \cos (x)-B \sin (x)-4(-A \sin (x)+B \cos (x))+4(A \cos (x)+B \sin (x))= \\
& (3 A-4 B) \cos (x)+(4 A+3 B) \sin (x)=25 \cos (x) \\
& \left\{\begin{array} { c }
{ 3 A - 4 B = 2 5 } \\
{ 4 A + 3 B = 0 }
\end{array} \mapsto \left\{\begin{array} { c }
{ 3 A - 4 B = 2 5 } \\
{ A = - \frac { 3 } { 4 } B }
\end{array} \mapsto \left\{\begin{array}{c}
-\frac{9}{4} B-4 B=25 \\
A=-\frac{3}{4} B
\end{array}\right.\right.\right. \\
& \mapsto\left\{\begin{array} { c }
{ - \frac { 2 5 } { 4 } B = 2 5 } \\
{ A = - \frac { 3 } { 4 } B }
\end{array} \mapsto \left\{\begin{array}{c}
B=-4 \\
A=3
\end{array}\right.\right. \\
& y_{p}=3 \cos (x)-4 \sin (x)
\end{aligned}
$$

The general solution is thus

$$
\begin{aligned}
& y=3 \cos (x)-4 \sin (x)+c_{1} \mathrm{e}^{2 x}+c_{2} x \mathrm{e}^{2 x} \\
& y^{\prime}=-3 \sin (x)-4 \cos (x)+2 c_{1} \mathrm{e}^{2 x}+2 c_{2} x \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x}
\end{aligned}
$$

We have thus

$$
\begin{aligned}
& y(0)=3+c_{1}=0 \quad \Rightarrow \quad c_{1}=-3 \\
& y^{\prime}(0)=-4-6+c_{2}=0 \quad \Rightarrow \quad c_{2}=10 \\
& y_{I V P}=3 \cos (x)-4 \sin (x)-3 \mathrm{e}^{2 x}+10 x \mathrm{e}^{2 x}
\end{aligned}
$$

[10 points] Problem 3.

Consider the Cauchy-Euler linear ODE

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=x^{2}
$$

(i) Find the complementary solution y_{c} (i.e. the general solution of the associated homogeneous equation).
(ii) Find a particular solution y_{p} (hint: Variation of Parameters. Warning:
must put in standard form first!). Solution Complementary: the auxiliary equation is

$$
m(m-1)-m+1=m^{2}-2 m+1=(m-1)^{2}
$$

hence

$$
y_{c}=c_{1} x+c_{2} x \ln x
$$

Particular: using variation of parameters. Note that the standard form is

$$
y^{\prime \prime}-\frac{1}{x} y^{\prime}+\frac{1}{x^{2}} y=1
$$

so $f(x)$ in the formula of variation of parameters is $f(x)=1$.

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
W & :=\operatorname{det}\left(\begin{array}{cc}
x & x \ln x \\
1 & \ln x+1
\end{array}\right)=x \\
u_{1}^{\prime} & =\frac{-y_{2} f}{W}=-\frac{x \ln x}{x}=-\ln (x) \Rightarrow u_{1}=-\int \ln (x) \mathrm{d} x=-x \ln x+x \\
u_{2}^{\prime} & =\frac{y_{1} f}{W}=\frac{x}{x}=1 \Rightarrow u_{2}=x
\end{aligned}
$$

So we have

$$
\begin{array}{r}
y_{p}=(x-x \ln x) x+x^{2} \ln x=x^{2} \\
y=x^{2}+c_{1} x+c_{2} x \ln x
\end{array}
$$

[10 points] Problem 4.

A mass of 2 Kg is attached to a spring of constant $k=1 \mathrm{~N} / \mathrm{m}$. The medium offers a damping coefficient of $2 \mathrm{Ns} / \mathrm{m}$. The system is subject to an external force equal to

$$
F_{e x t}=13 \cos (2 t) .
$$

Find the motion of the mass if we know that it is released from equilibrium and at rest.

Solution

The equation of motion is

$$
\begin{aligned}
& M x^{\prime \prime}+\beta x^{\prime}+k x=F_{e x t} \\
& 2 x^{\prime \prime}+2 x^{\prime}+x=13 \cos (2 t)
\end{aligned}
$$

We have the auxiliary equation

$$
\begin{gathered}
2 m^{2}+2 m+1=0 \quad m_{1,2}=\frac{-1 \pm \sqrt{1-2}}{2}=\frac{-1 \pm i}{2} \\
x_{c}=\mathrm{e}^{-\frac{t}{2}}\left(c_{1} \cos (t / 2)+c_{2} \sin (t / 2)\right)
\end{gathered}
$$

The motion is underdamped (complex-conjugate roots).
The particular solution is

$$
\begin{aligned}
& x_{p}=A \cos (2 t)+B \sin (2 t) \\
& x_{p}^{\prime}=-2 A \sin (2 t)+2 B \cos (2 t) \\
& x_{p}^{\prime \prime}=-4 A \cos (2 t)-4 B \sin (2 t)
\end{aligned}
$$

Plugging into the equation we find

$$
\begin{aligned}
& 2(-4 A \cos (2 t)-4 B \sin (2 t))+2(-2 A \sin (2 t)+2 B \cos (2 t))+A \cos (2 t)+B \sin (2 t)= \\
& =(-7 A+4 B) \cos (2 t)+(-7 B-4 A) \sin (2 t)=13 \cos (2 t)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left\{\begin{array} { c }
{ - 7 A + 4 B = 1 3 } \\
{ - 7 B - 4 A = 0 }
\end{array} \mapsto \left\{\begin{array} { c }
{ - 7 A + 4 B = 1 3 } \\
{ A = - \frac { 7 } { 4 } B }
\end{array} \mapsto \left\{\begin{array}{c}
\frac{49}{4} B+4 B=13 \\
A=-\frac{7}{4} B
\end{array}\right.\right.\right. \\
& \left\{\begin{array} { c }
{ \frac { 6 5 } { 4 } B = 1 3 } \\
{ A = - \frac { 7 } { 4 } B }
\end{array} \mapsto \left\{\begin{array}{c}
B=\frac{4}{5} \\
A=-\frac{7}{5}
\end{array}\right.\right.
\end{aligned}
$$

So

$$
\begin{gathered}
x(t)=\mathrm{e}^{-\frac{t}{2}}\left(c_{1} \cos (t / 2)+c_{2} \sin (t / 2)\right)-\frac{7}{5} \cos (2 t)+\frac{4}{5} \sin (2 t) \\
x^{\prime}(t)=\frac{1}{2} \mathrm{e}^{-\frac{t}{2}}\left(\left(c_{2}-c_{1}\right) \cos (t / 2)-\left(c_{1}+c_{2}\right) \sin (t / 2)\right)+\frac{14}{5} \sin (2 t)+\frac{8}{5} \cos (2 t) \\
0=x(0)=c_{1}-\frac{7}{5} \Rightarrow c_{1}=\frac{7}{5} \\
0=x^{\prime}(0)=\frac{c_{2}-c_{1}}{2}+\frac{8}{5}=\frac{c_{2}}{2}-\frac{7}{10}+\frac{16}{10}=\frac{c_{2}}{2}+\frac{9}{10} \Rightarrow c_{2}=-\frac{9}{5} \\
x_{I V P}=\mathrm{e}^{-\frac{t}{2}}\left(\frac{7}{5} \cos (t / 2)-\frac{9}{5} \sin (t / 2)\right)-\frac{7}{5} \cos (2 t)+\frac{4}{5} \sin (2 t)
\end{gathered}
$$

