## Midterm Exam Emat 213

## October 2005

Instructor:
Time allowed: 1h15min sharp.
Material allowed:no calculators.
[10 points] Problem 1.
Consider the two following first-order ODE's:
(a) $\frac{d y}{d x}-2 y=2 x^{2}$
(b) $\frac{d y}{d x}-2 x=2 y^{2}$.

Find the linear one and explain why the other is not linear.
Find the general solution for the linear equation and solve also the IVP, $y(0)=2$.
Solution The second equation is not linear because the dependent variable $y$ is raised to the second power.

The first equation is linear.

$$
y_{c}=C \mathrm{e}^{2 x}
$$

For the particular solution we use the Ansatz $y_{p}=A x^{2}+B x+C$; this gives

$$
2 A x+B-2 A x^{2}-2 B x-2 C=-2 A x^{2}+2(A-B) x+B-2 C=2 x^{2}
$$

From which we read $A=-1, B=A=-1, C=\frac{1}{2} B=-\frac{1}{2}$. The general solution is

$$
y=C \mathrm{e}^{2 x}-x^{2}-x-\frac{1}{2}
$$

The IVP solution is

$$
\begin{gathered}
y(0)=C-\frac{1}{2}=2 \Rightarrow C=\frac{5}{2} \\
y_{I V P}=\frac{5}{2} \mathrm{e}^{2 x}-x^{2}-x-\frac{1}{2}
\end{gathered}
$$

## [10 points] Problem 2.

(i) Determine which of the following ODE's is exact.

$$
\begin{aligned}
& \text { (a) } y^{4} \mathrm{~d} x-\left(x^{2} \cos (y)\right) \mathrm{d} y=0 \\
& \text { (b) } \\
& \left(\mathrm{e}^{-x y}+\cos (x)\right) \mathrm{d} x+\left(x \mathrm{e}^{-x y}-1\right) \mathrm{d} y=0 \\
& \text { (c) } \\
& \left(2 x y-y e^{x y}\right) \mathrm{d} x+\left(x^{2}+4 y^{3}-x e^{x y}\right) \mathrm{d} y=0
\end{aligned}
$$

(ii) Solve the exact ODE in point (i) by expressing (as always) the solution in implicit form and also find the solution of the IVP

$$
y(0)=3 .
$$

Solution We check for exactness
(a) : $\partial_{y}\left(y^{4}\right)=4 y^{3}, \quad \partial_{x}\left(-x^{2} \cos (y)\right)=-2 x \cos (y)$ not equal, hence not exact
(b) : $\partial_{y}\left(\mathrm{e}^{-x y}+\cos (x)\right)=-x \mathrm{e}^{x y}, \quad \partial_{x}\left(x \mathrm{e}^{-x y}-1\right)=\mathrm{e}^{-x y}-x y \mathrm{e}^{x y}$ not equal, not exact
(c) : $\partial_{y}\left(2 x y-y e^{x y}\right)=2 x-\mathrm{e}^{x y}-x y \mathrm{e}^{x y}, \quad \partial_{x}\left(x^{2}+4 y^{3}-x e^{x y}\right)=2 x-\mathrm{e}^{x y}-x y \mathrm{e}^{x y}$ exact!

So we solve (c). We have

$$
\begin{aligned}
F(x, y)= & \int\left(2 x y-y e^{x y}\right) \mathrm{d} x=x^{2} y-\mathrm{e}^{x y}+h(y) \\
& \partial_{y} F(x, y)=x^{2}-x \mathrm{e}^{x y}+h^{\prime}(y)=x^{2}+4 y^{3}-x e^{x y} \Rightarrow h^{\prime}(y)=4 y^{3} \\
& h(y)=y^{4} \\
F(x, y)= & x^{2} y-\mathrm{e}^{x y}+y^{4}
\end{aligned}
$$

The general solution is thus

$$
F(x, y)=x^{2} y-\mathrm{e}^{x y}+y^{4}=C
$$

The solution of the IVP is

$$
\begin{array}{r}
F(0,3)=C=81-1=80 \\
x^{2} y-\mathrm{e}^{x y}+y^{4}=80 .
\end{array}
$$

## [10 points] Problem 3.

(i) Perform the substitution $y=u^{-1}$ in the following Bernoulli equation and reduce it to a linear ODE.

$$
\frac{d y}{d x}-y=\mathrm{e}^{x} y^{2}
$$

(ii) Perform the substitution $y=x u$ in the ODE which is homogeneous among the following two and reduce it to a separable equation for the unknown function $u$ (it is not required that you solve it).
(a) $\left(y^{2}-3 x y\right) \mathrm{d} x-x^{2} \mathrm{~d} y=0$
(b) $\quad\left(2 y x-x^{3}\right) \mathrm{d} x-y \mathrm{~d} y=0$.

## Solution

(i)

$$
\begin{aligned}
& y^{\prime}=-\frac{1}{u^{2}} u^{\prime} \\
& -\frac{u^{\prime}}{u^{2}}-\frac{1}{u}=\mathrm{e}^{x} \frac{1}{u^{2}} \\
& u^{\prime}+u=-\mathrm{e}^{x} \\
& u=C \mathrm{e}^{-x}-\mathrm{e}^{-x} \int \mathrm{e}^{x} \mathrm{e}^{x} \mathrm{~d} x=C \mathrm{e}^{-x}-\mathrm{e}^{-x} \int \mathrm{e}^{2 x} \mathrm{~d} x= \\
& =C \mathrm{e}^{-x}-\frac{1}{2} \mathrm{e}^{-x} \mathrm{e}^{2 x}=C \mathrm{e}^{-x}-\frac{1}{2} \mathrm{e}^{x}
\end{aligned}
$$

So we have

$$
y=\frac{1}{u}=\frac{1}{C \mathrm{e}^{-x}-\frac{1}{2} \mathrm{e}^{x}}
$$

(ii) The first equation is homogeneous of degree 2; the second is not homogeneous.

$$
\begin{aligned}
& y=x u \\
& d y=x d u+u d x \\
& \left(y^{2}-3 x y\right) \mathrm{d} x-x^{2} \mathrm{~d} y= \\
& =\left(u^{2} x^{2}-3 x^{2} u\right) \mathrm{d} x-x^{2}(x d u+u d x)=x^{2}\left(u^{2}-3 u-u\right) \mathrm{d} x-x^{3} \mathrm{~d} u
\end{aligned}
$$

Hence the ODE becomes

$$
\begin{aligned}
& \frac{1}{x} \mathrm{~d} x-\frac{1}{u^{2}-2 u} \mathrm{~d} u=0 \\
& \int \frac{1}{u^{2}-2 u} \mathrm{~d} u=\int \frac{\mathrm{d} x}{x}
\end{aligned}
$$

## [10 points] Problem 4.

Find the orthogonal trajectories to the family of curves

$$
x^{4}+2 y^{4}=C, \quad(C>0)
$$

## Solution

The implicit derivative gives

$$
\begin{aligned}
& 4 x^{3} \mathrm{~d} x+4 y^{3} \mathrm{~d} y=0 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{x^{3}}{y^{3}}
\end{aligned}
$$

The orthogonal family has ODE (separable)

$$
\begin{array}{r}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{3}}{x^{3}} \\
\int \frac{\mathrm{~d} y}{y^{3}}=\int \frac{\mathrm{d} x}{x^{3}} \\
-\frac{1}{3 y^{2}}=-\frac{1}{3 x^{2}}+C \\
\frac{1}{x^{3}}-\frac{1}{y^{3}}=\tilde{C}
\end{array}
$$

